Abstract:The causal explanation of image misclassifications is an understudied niche, which can potentially provide valuable insights in model interpretability and increase prediction accuracy. This study trains CIFAR-10 on six modern CNN architectures, including VGG16, ResNet50, GoogLeNet, DenseNet161, MobileNet V2, and Inception V3, and explores the misclassification patterns using conditional confusion matrices and misclassification networks. Two causes are identified and qualitatively distinguished: morphological similarity and non-essential information interference. The former cause is not model dependent, whereas the latter is inconsistent across all six models. To reduce the misclassifications caused by non-essential information interference, this study erases the pixels within the bonding boxes anchored at the top 5% pixels of the saliency map. This method first verifies the cause; then by directly modifying the cause it reduces the misclassification. Future studies will focus on quantitatively differentiating the two causes of misclassifications, generalizing the anchor-box based inference modification method to reduce misclassification, exploring the interactions of the two causes in misclassifications.
Abstract:Feature selection is a widely used dimension reduction technique to select feature subsets because of its interpretability. Many methods have been proposed and achieved good results, in which the relationships between adjacent data points are mainly concerned. But the possible associations between data pairs that are may not adjacent are always neglected. Different from previous methods, we propose a novel and very simple approach for unsupervised feature selection, named MMFS (Multi-step Markov transition probability for Feature Selection). The idea is using multi-step Markov transition probability to describe the relation between any data pair. Two ways from the positive and negative viewpoints are employed respectively to keep the data structure after feature selection. From the positive viewpoint, the maximum transition probability that can be reached in a certain number of steps is used to describe the relation between two points. Then, the features which can keep the compact data structure are selected. From the viewpoint of negative, the minimum transition probability that can be reached in a certain number of steps is used to describe the relation between two points. On the contrary, the features that least maintain the loose data structure are selected. And the two ways can also be combined. Thus three algorithms are proposed. Our main contributions are a novel feature section approach which uses multi-step transition probability to characterize the data structure, and three algorithms proposed from the positive and negative aspects for keeping data structure. The performance of our approach is compared with the state-of-the-art methods on eight real-world data sets, and the experimental results show that the proposed MMFS is effective in unsupervised feature selection.