Abstract:The neural radiance fields (NeRF) have advanced the development of 3D volumetric video technology, but the large data volumes they involve pose significant challenges for storage and transmission. To address these problems, the existing solutions typically compress these NeRF representations after the training stage, leading to a separation between representation training and compression. In this paper, we try to directly learn a compact NeRF representation for volumetric video in the training stage based on the proposed rate-aware compression framework. Specifically, for volumetric video, we use a simple yet effective modeling strategy to reduce temporal redundancy for the NeRF representation. Then, during the training phase, an implicit entropy model is utilized to estimate the bitrate of the NeRF representation. This entropy model is then encoded into the bitstream to assist in the decoding of the NeRF representation. This approach enables precise bitrate estimation, thereby leading to a compact NeRF representation. Furthermore, we propose an adaptive quantization strategy and learn the optimal quantization step for the NeRF representations. Finally, the NeRF representation can be optimized by using the rate-distortion trade-off. Our proposed compression framework can be used for different representations and experimental results demonstrate that our approach significantly reduces the storage size with marginal distortion and achieves state-of-the-art rate-distortion performance for volumetric video on the HumanRF and ReRF datasets. Compared to the previous state-of-the-art method TeTriRF, we achieved an approximately -80% BD-rate on the HumanRF dataset and -60% BD-rate on the ReRF dataset.
Abstract:Based on the framework of Conformal Prediction (CP), we study the online construction of valid confidence sets given a black-box machine learning model. By converting the target confidence levels into quantile levels, the problem can be reduced to predicting the quantiles (in hindsight) of a sequentially revealed data sequence. Two very different approaches have been studied previously. (i) Direct approach: Assuming the data sequence is iid or exchangeable, one could maintain the empirical distribution of the observed data as an algorithmic belief, and directly predict its quantiles. (ii) Indirect approach: As statistical assumptions often do not hold in practice, a recent trend is to consider the adversarial setting and apply first-order online optimization to moving quantile losses (Gibbs & Cand\`es, 2021). It requires knowing the target quantile level beforehand, and suffers from certain validity issues on the obtained confidence sets, due to the associated loss linearization. This paper presents a novel Bayesian CP framework that combines their strengths. Without any statistical assumption, it is able to both: (i) answer multiple arbitrary confidence level queries online, with provably low regret; and (ii) overcome the validity issues suffered by first-order optimization baselines, due to being "data-centric" rather than "iterate-centric". From a technical perspective, our key idea is to regularize the algorithmic belief of the above direct approach by a Bayesian prior, which "robustifies" it by simulating a non-linearized Follow the Regularized Leader (FTRL) algorithm on the output. For statisticians, this can be regarded as an online adversarial view of Bayesian inference. Importantly, the proposed belief update backbone is shared by prediction heads targeting different confidence levels, bringing practical benefits analogous to U-calibration (Kleinberg et al., 2023).
Abstract:Analyzing real-world multimodal signals is an essential and challenging task for intelligent voice assistants (IVAs). Mainstream approaches have achieved remarkable performance on various downstream tasks of IVAs with pre-trained audio models and text models. However, these models are pre-trained independently and usually on tasks different from target domains, resulting in sub-optimal modality representations for downstream tasks. Moreover, in many domains, collecting enough language-audio pairs is extremely hard, and transcribing raw audio also requires high professional skills, making it difficult or even infeasible to joint pre-training. To address these painpoints, we propose DSCLAP, a simple and effective framework that enables language-audio pre-training with only raw audio signal input. Specifically, DSCLAP converts raw audio signals into text via an ASR system and combines a contrastive learning objective and a language-audio matching objective to align the audio and ASR transcriptions. We pre-train DSCLAP on 12,107 hours of in-vehicle domain audio. Empirical results on two downstream tasks show that while conceptually simple, DSCLAP significantly outperforms the baseline models in all metrics, showing great promise for domain-specific IVAs applications.
Abstract:Contrastive learning has become one of the most impressive approaches for multi-modal representation learning. However, previous multi-modal works mainly focused on cross-modal understanding, ignoring in-modal contrastive learning, which limits the representation of each modality. In this paper, we propose a novel contrastive learning strategy, called $Turbo$, to promote multi-modal understanding by joint in-modal and cross-modal contrastive learning. Specifically, multi-modal data pairs are sent through the forward pass twice with different hidden dropout masks to get two different representations for each modality. With these representations, we obtain multiple in-modal and cross-modal contrastive objectives for training. Finally, we combine the self-supervised Turbo with the supervised multi-modal classification and demonstrate its effectiveness on two audio-text classification tasks, where the state-of-the-art performance is achieved on a speech emotion recognition benchmark dataset.
Abstract:With the goal of more natural and human-like interaction with virtual voice assistants, recent research in the field has focused on full duplex interaction mode without relying on repeated wake-up words. This requires that in scenes with complex sound sources, the voice assistant must classify utterances as device-oriented or non-device-oriented. The dual-encoder structure, which is jointly modeled by text and speech, has become the paradigm of device-directed speech detection. However, in practice, these models often produce incorrect predictions for unaligned input pairs due to the unavoidable errors of automatic speech recognition (ASR).To address this challenge, we propose M$^{3}$V, a multi-modal multi-view approach for device-directed speech detection, which frames we frame the problem as a multi-view learning task that introduces unimodal views and a text-audio alignment view in the network besides the multi-modal. Experimental results show that M$^{3}$V significantly outperforms models trained using only single or multi-modality and surpasses human judgment performance on ASR error data for the first time.
Abstract:Conformal prediction (CP) enables machine learning models to output prediction sets with guaranteed coverage rate, assuming exchangeable data. Unfortunately, the exchangeability assumption is frequently violated due to distribution shifts in practice, and the challenge is often compounded by the lack of ground truth labels at test time. Focusing on classification in this paper, our goal is to improve the quality of CP-generated prediction sets using only unlabeled data from the test domain. This is achieved by two new methods called ECP and EACP, that adjust the score function in CP according to the base model's uncertainty on the unlabeled test data. Through extensive experiments on a number of large-scale datasets and neural network architectures, we show that our methods provide consistent improvement over existing baselines and nearly match the performance of supervised algorithms.
Abstract:A key challenge in lifelong reinforcement learning (RL) is the loss of plasticity, where previous learning progress hinders an agent's adaptation to new tasks. While regularization and resetting can help, they require precise hyperparameter selection at the outset and environment-dependent adjustments. Building on the principled theory of online convex optimization, we present a parameter-free optimizer for lifelong RL, called PACE, which requires no tuning or prior knowledge about the distribution shifts. Extensive experiments on Procgen, Atari, and Gym Control environments show that PACE works surprisingly well$\unicode{x2013}$mitigating loss of plasticity and rapidly adapting to challenging distribution shifts$\unicode{x2013}$despite the underlying optimization problem being nonconvex and nonstationary.
Abstract:Physics-based models are computationally time-consuming and infeasible for real-time scenarios of urban drainage networks, and a surrogate model is needed to accelerate the online predictive modelling. Fully-connected neural networks (NNs) are potential surrogate models, but may suffer from low interpretability and efficiency in fitting complex targets. Owing to the state-of-the-art modelling power of graph neural networks (GNNs) and their match with urban drainage networks in the graph structure, this work proposes a GNN-based surrogate of the flow routing model for the hydraulic prediction problem of drainage networks, which regards recent hydraulic states as initial conditions, and future runoff and control policy as boundary conditions. To incorporate hydraulic constraints and physical relationships into drainage modelling, physics-guided mechanisms are designed on top of the surrogate model to restrict the prediction variables with flow balance and flooding occurrence constraints. According to case results in a stormwater network, the GNN-based model is more cost-effective with better hydraulic prediction accuracy than the NN-based model after equal training epochs, and the designed mechanisms further limit prediction errors with interpretable domain knowledge. As the model structure adheres to the flow routing mechanisms and hydraulic constraints in urban drainage networks, it provides an interpretable and effective solution for data-driven surrogate modelling. Simultaneously, the surrogate model accelerates the predictive modelling of urban drainage networks for real-time use compared with the physics-based model.
Abstract:Online learning is not always about memorizing everything. Since the future can be statistically very different from the past, a critical challenge is to gracefully forget the history while new data comes in. To formalize this intuition, we revisit the classical notion of discounted regret using recently developed techniques in adaptive online learning. Our main result is a new algorithm that adapts to the complexity of both the loss sequence and the comparator, improving the widespread non-adaptive algorithm - gradient descent with a constant learning rate. In particular, our theoretical guarantee does not require any structural assumption beyond convexity, and the algorithm is provably robust to suboptimal hyperparameter tuning. We further demonstrate such benefits through online conformal prediction, a downstream online learning task with set-membership decisions.
Abstract:Despite the success of the Adam optimizer in practice, the theoretical understanding of its algorithmic components still remains limited. In particular, most existing analyses of Adam show the convergence rate that can be simply achieved by non-adative algorithms like SGD. In this work, we provide a different perspective based on online learning that underscores the importance of Adam's algorithmic components. Inspired by Cutkosky et al. (2023), we consider the framework called online learning of updates, where we choose the updates of an optimizer based on an online learner. With this framework, the design of a good optimizer is reduced to the design of a good online learner. Our main observation is that Adam corresponds to a principled online learning framework called Follow-the-Regularized-Leader (FTRL). Building on this observation, we study the benefits of its algorithmic components from the online learning perspective.