Abstract:Large language models (LLMs) have demonstrated remarkable performance across a wide range of tasks. Advances in prompt engineering and fine-tuning techniques have further enhanced their ability to address complex reasoning challenges. However, these advanced capabilities are often exclusive to models exceeding 100 billion parameters. Although Chain-of-Thought (CoT) fine-tuning methods have been explored for smaller models (under 10 billion parameters), they typically depend on extensive CoT training data, which can introduce inconsistencies and limit effectiveness in low-data settings. To overcome these limitations, this paper introduce a new reasoning strategy Solution Guidance (SG) and a plug-and-play training paradigm Solution-Guidance Fine-Tuning (SGFT) for enhancing the reasoning capabilities of small language models. SG focuses on problem understanding and decomposition at the semantic and logical levels, rather than specific computations, which can effectively improve the SLMs' generalization and reasoning abilities. With only a small amount of SG training data, SGFT can fine-tune a SLM to produce accurate problem-solving guidances, which can then be flexibly fed to any SLM as prompts, enabling it to generate correct answers directly. Experimental results demonstrate that our method significantly improves the performance of SLMs on various reasoning tasks, enhancing both their practicality and efficiency within resource-constrained environments.
Abstract:Camera-based computer vision is essential to autonomous vehicle's perception. This paper presents an attack that uses light-emitting diodes and exploits the camera's rolling shutter effect to create adversarial stripes in the captured images to mislead traffic sign recognition. The attack is stealthy because the stripes on the traffic sign are invisible to human. For the attack to be threatening, the recognition results need to be stable over consecutive image frames. To achieve this, we design and implement GhostStripe, an attack system that controls the timing of the modulated light emission to adapt to camera operations and victim vehicle movements. Evaluated on real testbeds, GhostStripe can stably spoof the traffic sign recognition results for up to 94\% of frames to a wrong class when the victim vehicle passes the road section. In reality, such attack effect may fool victim vehicles into life-threatening incidents. We discuss the countermeasures at the levels of camera sensor, perception model, and autonomous driving system.
Abstract:Temporal knowledge graphs (TKGs) have been identified as a promising approach to represent the dynamics of facts along the timeline. The extrapolation of TKG is to predict unknowable facts happening in the future, holding significant practical value across diverse fields. Most extrapolation studies in TKGs focus on modeling global historical fact repeating and cyclic patterns, as well as local historical adjacent fact evolution patterns, showing promising performance in predicting future unknown facts. Yet, existing methods still face two major challenges: (1) They usually neglect the importance of historical information in KG snapshots related to the queries when encoding the local and global historical information; (2) They exhibit weak anti-noise capabilities, which hinders their performance when the inputs are contaminated with noise.To this end, we propose a novel \blue{Lo}cal-\blue{g}lobal history-aware \blue{C}ontrastive \blue{L}earning model (\blue{LogCL}) for TKG reasoning, which adopts contrastive learning to better guide the fusion of local and global historical information and enhance the ability to resist interference. Specifically, for the first challenge, LogCL proposes an entity-aware attention mechanism applied to the local and global historical facts encoder, which captures the key historical information related to queries. For the latter issue, LogCL designs four historical query contrast patterns, effectively improving the robustness of the model. The experimental results on four benchmark datasets demonstrate that LogCL delivers better and more robust performance than the state-of-the-art baselines.
Abstract:Graph neural networks (GNNs) have shown promising performance for knowledge graph reasoning. A recent variant of GNN called progressive relational graph neural network (PRGNN), utilizes relational rules to infer missing knowledge in relational digraphs and achieves notable results. However, during reasoning with PRGNN, two important properties are often overlooked: (1) the sequentiality of relation composition, where the order of combining different relations affects the semantics of the relational rules, and (2) the lagged entity information propagation, where the transmission speed of required information lags behind the appearance speed of new entities. Ignoring these properties leads to incorrect relational rule learning and decreased reasoning accuracy. To address these issues, we propose a novel knowledge graph reasoning approach, the Relational rUle eNhanced Graph Neural Network (RUN-GNN). Specifically, RUN-GNN employs a query related fusion gate unit to model the sequentiality of relation composition and utilizes a buffering update mechanism to alleviate the negative effect of lagged entity information propagation, resulting in higher-quality relational rule learning. Experimental results on multiple datasets demonstrate the superiority of RUN-GNN is superior on both transductive and inductive link prediction tasks.
Abstract:The need for deep neural network (DNN) models with higher performance and better functionality leads to the proliferation of very large models. Model training, however, requires intensive computation time and energy. Memristor-based compute-in-memory (CIM) modules can perform vector-matrix multiplication (VMM) in situ and in parallel, and have shown great promises in DNN inference applications. However, CIM-based model training faces challenges due to non-linear weight updates, device variations, and low-precision in analog computing circuits. In this work, we experimentally implement a mixed-precision training scheme to mitigate these effects using a bulk-switching memristor CIM module. Lowprecision CIM modules are used to accelerate the expensive VMM operations, with high precision weight updates accumulated in digital units. Memristor devices are only changed when the accumulated weight update value exceeds a pre-defined threshold. The proposed scheme is implemented with a system-on-chip (SoC) of fully integrated analog CIM modules and digital sub-systems, showing fast convergence of LeNet training to 97.73%. The efficacy of training larger models is evaluated using realistic hardware parameters and shows that that analog CIM modules can enable efficient mix-precision DNN training with accuracy comparable to full-precision software trained models. Additionally, models trained on chip are inherently robust to hardware variations, allowing direct mapping to CIM inference chips without additional re-training.
Abstract:Analog compute-in-memory (CIM) accelerators are becoming increasingly popular for deep neural network (DNN) inference due to their energy efficiency and in-situ vector-matrix multiplication (VMM) capabilities. However, as the use of DNNs expands, protecting user input privacy has become increasingly important. In this paper, we identify a security vulnerability wherein an adversary can reconstruct the user's private input data from a power side-channel attack, under proper data acquisition and pre-processing, even without knowledge of the DNN model. We further demonstrate a machine learning-based attack approach using a generative adversarial network (GAN) to enhance the reconstruction. Our results show that the attack methodology is effective in reconstructing user inputs from analog CIM accelerator power leakage, even when at large noise levels and countermeasures are applied. Specifically, we demonstrate the efficacy of our approach on the U-Net for brain tumor detection in magnetic resonance imaging (MRI) medical images, with a noise-level of 20% standard deviation of the maximum power signal value. Our study highlights a significant security vulnerability in analog CIM accelerators and proposes an effective attack methodology using a GAN to breach user privacy.
Abstract:A lensless camera is an imaging system that uses a mask in place of a lens, making it thinner, lighter, and less expensive than a lensed camera. However, additional complex computation and time are required for image reconstruction. This work proposes a deep learning model named Raw3dNet that recognizes hand gestures directly on raw videos captured by a lensless camera without the need for image restoration. In addition to conserving computational resources, the reconstruction-free method provides privacy protection. Raw3dNet is a novel end-to-end deep neural network model for the recognition of hand gestures in lensless imaging systems. It is created specifically for raw video captured by a lensless camera and has the ability to properly extract and combine temporal and spatial features. The network is composed of two stages: 1. spatial feature extractor (SFE), which enhances the spatial features of each frame prior to temporal convolution; 2. 3D-ResNet, which implements spatial and temporal convolution of video streams. The proposed model achieves 98.59% accuracy on the Cambridge Hand Gesture dataset in the lensless optical experiment, which is comparable to the lensed-camera result. Additionally, the feasibility of physical object recognition is assessed. Furtherly, we show that the recognition can be achieved with respectable accuracy using only a tiny portion of the original raw data, indicating the potential for reducing data traffic in cloud computing scenarios.
Abstract:Lensless cameras are characterized by several advantages (e.g., miniaturization, ease of manufacture, and low cost) as compared with conventional cameras. However, they have not been extensively employed due to their poor image clarity and low image resolution, especially for tasks that have high requirements on image quality and details such as text detection and text recognition. To address the problem, a framework of deep-learning-based pipeline structure was built to recognize text with three steps from raw data captured by employing lensless cameras. This pipeline structure consisted of the lensless imaging model U-Net, the text detection model connectionist text proposal network (CTPN), and the text recognition model convolutional recurrent neural network (CRNN). Compared with the method focusing only on image reconstruction, UNet in the pipeline was able to supplement the imaging details by enhancing factors related to character categories in the reconstruction process, so the textual information can be more effectively detected and recognized by CTPN and CRNN with fewer artifacts and high-clarity reconstructed lensless images. By performing experiments on datasets of different complexities, the applicability to text detection and recognition on lensless cameras was verified. This study reasonably demonstrates text detection and recognition tasks in the lensless camera system,and develops a basic method for novel applications.
Abstract:Document-level relation extraction has attracted much attention in recent years. It is usually formulated as a classification problem that predicts relations for all entity pairs in the document. However, previous works indiscriminately represent intra- and inter-sentential relations in the same way, confounding the different patterns for predicting them. Besides, they create a document graph and use paths between entities on the graph as clues for logical reasoning. However, not all entity pairs can be connected with a path and have the correct logical reasoning paths in their graph. Thus many cases of logical reasoning cannot be covered. This paper proposes an effective architecture, SIRE, to represent intra- and inter-sentential relations in different ways. We design a new and straightforward form of logical reasoning module that can cover more logical reasoning chains. Experiments on the public datasets show SIRE outperforms the previous state-of-the-art methods. Further analysis shows that our predictions are reliable and explainable. Our code is available at https://github.com/DreamInvoker/SIRE.
Abstract:Causal inference is the process of capturing cause-effect relationship among variables. Most existing works focus on dealing with structured data, while mining causal relationship among factors from unstructured data, like text, has been less examined, but is of great importance, especially in the legal domain. In this paper, we propose a novel Graph-based Causal Inference (GCI) framework, which builds causal graphs from fact descriptions without much human involvement and enables causal inference to facilitate legal practitioners to make proper decisions. We evaluate the framework on a challenging similar charge disambiguation task. Experimental results show that GCI can capture the nuance from fact descriptions among multiple confusing charges and provide explainable discrimination, especially in few-shot settings. We also observe that the causal knowledge contained in GCI can be effectively injected into powerful neural networks for better performance and interpretability.