Abstract:Intelligent reflecting surface (IRS) operating in the terahertz (THz) band has recently gained considerable interest due to its high spectrum bandwidth. Due to the exploitation of large scale of IRS, there is a high probability that the transceivers will be situated within the near-field region of the IRS. Thus, the near-field beam split effect poses a major challenge for the design of wideband IRS beamforming, which causes the radiation beam to deviate from its intended location, leading to significant gain losses and limiting the efficient use of available bandwidths. While delay-based IRS has emerged as a potential solution, current beamforming schemes generally assume unbounded range time delays (TDs). In this letter, we first investigate the near-field beam split issue at the IRS. Then, we extend the piece-wise far-field model to the IRS, based on which, a double-layer delta-delay (DLDD) IRS beamforming scheme is proposed. Specifically, we employ an element-grouping strategy and the TD imposed on each sub-surface of IRS is achieved by a series of TD modules. This method significantly reduces the required range of TDs. Numerical results show that the proposed DLDD IRS beamforming scheme can effectively mitigate the near-field beam split and achieve near-optimal performance.
Abstract:Recent advancements in Large Language Models (LLMs) have significantly extended their capabilities, evolving from basic text generation to complex, human-like interactions. In light of the possibilities that LLMs could assume significant workplace responsibilities, it becomes imminently necessary to explore LLMs' capacities as professional assistants. This study focuses on the aspect of career interests by applying the Occupation Network's Interest Profiler short form to LLMs as if they were human participants and investigates their hypothetical career interests and competence, examining how these vary with language changes and model advancements. We analyzed the answers using a general linear mixed model approach and found distinct career interest inclinations among LLMs, particularly towards the social and artistic domains. Interestingly, these preferences did not align with the occupations where LLMs exhibited higher competence. This novel approach of using psychometric instruments and sophisticated statistical tools on LLMs unveils fresh perspectives on their integration into professional environments, highlighting human-like tendencies and promoting a reevaluation of LLMs' self-perception and competency alignment in the workforce.
Abstract:The integration of intelligent reflecting surface (IRS) into over-the-air computation (AirComp) is an effective solution for reducing the computational mean squared error (MSE) via its high passive beamforming gain. Prior works on IRS aided AirComp generally rely on the full instantaneous channel state information (I-CSI), which is not applicable to large-scale systems due to its heavy signalling overhead. To address this issue, we propose a novel multi-timescale transmission protocol. In particular, the receive beamforming at the access point (AP) is pre-determined based on the static angle information and the IRS phase-shifts are optimized relying on the long-term statistical CSI. With the obtained AP receive beamforming and IRS phase-shifts, the effective low-dimensional I-CSI is exploited to determine devices' transmit power in each coherence block, thus substantially reducing the signalling overhead. Theoretical analysis unveils that the achievable MSE scales on the order of ${\cal O}\left( {K/\left( {{N^2}M} \right)} \right)$, where $M$, $N$, and $K$ are the number of AP antennas, IRS elements, and devices, respectively. We also prove that the channel-inversion power control is asymptotically optimal for large $N$, which reveals that the full power transmission policy is not needed for lowering the power consumption of energy-limited devices.
Abstract:Integrating wireless sensing capabilities into base stations (BSs) has become a widespread trend in the future beyond fifth-generation (B5G)/sixth-generation (6G) wireless networks. In this paper, we investigate intelligent reflecting surface (IRS) enabled wireless localization, in which an IRS is deployed to assist a BS in locating a target in its non-line-of-sight (NLoS) region. In particular, we consider the case where the BS-IRS channel state information (CSI) is unknown. Specifically, we first propose a separate BS-IRS channel estimation scheme in which the BS operates in full-duplex mode (FDM), i.e., a portion of the BS antennas send downlink pilot signals to the IRS, while the remaining BS antennas receive the uplink pilot signals reflected by the IRS. However, we can only obtain an incomplete BS-IRS channel matrix based on our developed iterative coordinate descent-based channel estimation algorithm due to the "sign ambiguity issue". Then, we employ the multiple hypotheses testing framework to perform target localization based on the incomplete estimated channel, in which the probability of each hypothesis is updated using Bayesian inference at each cycle. Moreover, we formulate a joint BS transmit waveform and IRS phase shifts optimization problem to improve the target localization performance by maximizing the weighted sum distance between each two hypotheses. However, the objective function is essentially a quartic function of the IRS phase shift vector, thus motivating us to resort to the penalty-based method to tackle this challenge. Simulation results validate the effectiveness of our proposed target localization scheme and show that the scheme's performance can be further improved by finely designing the BS transmit waveform and IRS phase shifts intending to maximize the weighted sum distance between different hypotheses.
Abstract:This paper investigates simultaneous transmission and reflection reconfigurable intelligent surface (STAR-RIS) aided physical layer security (PLS) in multiple-input multiple-output (MIMO) systems, where the base station (BS) transmits secrecy information with the aid of STAR-RIS against multiple eavesdroppers equipped with multiple antennas. We aim to maximize the secrecy rate by jointly optimizing the active beamforming at the BS and passive beamforming at the STAR-RIS, subject to the hardware constraint for STAR-RIS. To handle the coupling variables, a minimum mean-square error (MMSE) based alternating optimization (AO) algorithm is applied. In particular, the amplitudes and phases of STAR-RIS are divided into two blocks to simplify the algorithm design. Besides, by applying the Majorization-Minimization (MM) method, we derive a closed-form expression of the STAR-RIS's phase shifts. Numerical results show that the proposed scheme significantly outperforms various benchmark schemes, especially as the number of STAR-RIS elements increases.
Abstract:With the emerging environment-aware applications, ubiquitous sensing is expected to play a key role in future networks. In this paper, we study a 3-dimensional (3D) multi-target localization system where multiple intelligent reflecting surfaces (IRSs) are applied to create virtual line-of-sight (LoS) links that bypass the base station (BS) and targets. To fully unveil the fundamental limit of IRS for sensing, we first study a single-target-single-IRS case and propose a novel \textit{two-stage localization protocol} by controlling the on/off state of IRS. To be specific, in the IRS-off stage, we derive the Cram\'{e}r-Rao bound (CRB) of the azimuth/elevation direction-of-arrival (DoA) of the BS-target link and design a DoA estimator based on the MUSIC algorithm. In the IRS-on stage, the CRB of the azimuth/elevation DoA of the IRS-target link is derived and a simple DoA estimator based on the on-grid IRS beam scanning method is proposed. Particularly, the impact of echo signals reflected by IRS from different paths on sensing performance is analyzed. Moreover, we prove that the single-beam of the IRS is not capable of sensing, but it can be achieved with \textit{multi-beam}. Based on the two obtained DoAs, the 3D single-target location is constructed. We then extend to the multi-target-multi-IRS case and propose an \textit{IRS-adaptive sensing protocol} by controlling the on/off state of multiple IRSs, and a multi-target localization algorithm is developed. Simulation results demonstrate the effectiveness of our scheme and show that sub-meter-level positioning accuracy can be achieved.
Abstract:The target sensing/localization performance is fundamentally limited by the line-of-sight link and severe signal attenuation over long distances. This paper considers a challenging scenario where the direct link between the base station (BS) and the target is blocked due to the surrounding blockages and leverages the intelligent reflecting surface (IRS) with some active sensors, termed as \textit{semi-passive IRS}, for localization. To be specific, the active sensors receive echo signals reflected by the target and apply signal processing techniques to estimate the target location. We consider the joint time-of-arrival (ToA) and direction-of-arrival (DoA) estimation for localization and derive the corresponding Cram\'{e}r-Rao bound (CRB), and then a simple ToA/DoA estimator without iteration is proposed. In particular, the relationships of the CRB for ToA/DoA with the number of frames for IRS beam adjustments, number of IRS reflecting elements, and number of sensors are theoretically analyzed and demystified. Simulation results show that the proposed semi-passive IRS architecture provides sub-meter level positioning accuracy even over a long localization range from the BS to the target and also demonstrate a significant localization accuracy improvement compared to the fully passive IRS architecture.
Abstract:Compared with traditional half-duplex wireless systems, the application of emerging full-duplex (FD) technology can potentially double the system capacity theoretically. However, conventional techniques for suppressing self-interference (SI) adopted in FD systems require exceedingly high power consumption and expensive hardware. In this paper, we consider employing an intelligent reflecting surface (IRS) in the proximity of an FD base station (BS) to mitigate SI for simultaneously receiving data from uplink users and transmitting information to downlink users. The objective considered is to maximize the weighted sum-rate of the system by jointly optimizing the IRS phase shifts, the BS transmit beamformers, and the transmit power of the uplink users. To visualize the role of the IRS in SI cancellation by isolating other interference, we first study a simple scenario with one downlink user and one uplink user. To address the formulated non-convex problem, a low-complexity algorithm based on successive convex approximation is proposed. For the more general case considering multiple downlink and uplink users, an efficient alternating optimization algorithm based on element-wise optimization is proposed. Numerical results demonstrate that the FD system with the proposed schemes can achieve a larger gain over the half-duplex system, and the IRS is able to achieve a balance between suppressing SI and providing beamforming gain.
Abstract:The 6th generation (6G) wireless communication network is envisaged to be able to change our lives drastically, including transportation. In this paper, two ways of interactions between 6G communication networks and transportation are introduced. With the new usage scenarios and capabilities 6G is going to support, passengers on all sorts of transportation systems will be able to get data more easily, even in the most remote areas on the planet. The quality of communication will also be improved significantly, thanks to the advanced capabilities of 6G. On top of providing seamless and ubiquitous connectivity to all forms of transportation, 6G will also transform the transportation systems to make them more intelligent, more efficient, and safer. Based on the latest research and standardization progresses, technical analysis on how 6G can empower advanced transportation systems are provided, as well as challenges and insights for a possible road ahead.
Abstract:This paper studies a communication-centric integrated sensing and communication (ISAC) system, where a multi-antenna base station (BS) simultaneously performs downlink communication and target detection. A novel target detection and information transmission protocol is proposed, where the BS executes the channel estimation and beamforming successively and meanwhile jointly exploits the pilot sequences in the channel estimation stage and user information in the transmission stage to assist target detection. We investigate the joint design of pilot matrix, training duration, and transmit beamforming to maximize the probability of target detection, subject to the minimum achievable rate required by the user. However, designing the optimal pilot matrix is rather challenging since there is no closed-form expression of the detection probability with respect to the pilot matrix. To tackle this difficulty, we resort to designing the pilot matrix based on the information-theoretic criterion to maximize the mutual information (MI) between the received observations and BS-target channel coefficients for target detection. We first derive the optimal pilot matrix for both channel estimation and target detection, and then propose an unified pilot matrix structure to balance minimizing the channel estimation error (MSE) and maximizing MI. Based on the proposed structure, a low-complexity successive refinement algorithm is proposed. Simulation results demonstrate that the proposed pilot matrix structure can well balance the MSE-MI and the Rate-MI tradeoffs, and show the significant region improvement of our proposed design as compared to other benchmark schemes. Furthermore, it is unveiled that as the communication channel is more correlated, the Rate-MI region can be further enlarged.