Abstract:Foundation models have indeed made a profound impact on various fields, emerging as pivotal components that significantly shape the capabilities of intelligent systems. In the context of intelligent vehicles, leveraging the power of foundation models has proven to be transformative, offering notable advancements in visual understanding. Equipped with multi-modal and multi-task learning capabilities, multi-modal multi-task visual understanding foundation models (MM-VUFMs) effectively process and fuse data from diverse modalities and simultaneously handle various driving-related tasks with powerful adaptability, contributing to a more holistic understanding of the surrounding scene. In this survey, we present a systematic analysis of MM-VUFMs specifically designed for road scenes. Our objective is not only to provide a comprehensive overview of common practices, referring to task-specific models, unified multi-modal models, unified multi-task models, and foundation model prompting techniques, but also to highlight their advanced capabilities in diverse learning paradigms. These paradigms include open-world understanding, efficient transfer for road scenes, continual learning, interactive and generative capability. Moreover, we provide insights into key challenges and future trends, such as closed-loop driving systems, interpretability, embodied driving agents, and world models. To facilitate researchers in staying abreast of the latest developments in MM-VUFMs for road scenes, we have established a continuously updated repository at https://github.com/rolsheng/MM-VUFM4DS
Abstract:The performance of face detectors has been largely improved with the development of convolutional neural network. However, it remains challenging for face detectors to detect tiny, occluded or blurry faces. Besides, most face detectors can't locate face's position precisely and can't achieve high Intersection-over-Union (IoU) scores. We assume that problems inside are inadequate use of supervision information and imbalance between semantics and details at all level feature maps in CNN even with Feature Pyramid Networks (FPN). In this paper, we present a novel single-shot face detection network, named DF$^2$S$^2$ (Detection with Feature Fusion and Segmentation Supervision), which introduces a more effective feature fusion pyramid and a more efficient segmentation branch on ResNet-50 to handle mentioned problems. Specifically, inspired by FPN and SENet, we apply semantic information from higher-level feature maps as contextual cues to augment low-level feature maps via a spatial and channel-wise attention style, preventing details from being covered by too much semantics and making semantics and details complement each other. We further propose a semantic segmentation branch to best utilize detection supervision information meanwhile applying attention mechanism in a self-supervised manner. The segmentation branch is supervised by weak segmentation ground-truth (no extra annotation is required) in a hierarchical manner, deprecated in the inference time so it wouldn't compromise the inference speed. We evaluate our model on WIDER FACE dataset and achieved state-of-art results.