Abstract:3D point cloud has been widely used in applications such as self-driving cars, robotics, CAD models, etc. To the best of our knowledge, these applications raised the issue of privacy leakage in 3D point clouds, which has not been studied well. Different from the 2D image privacy, which is related to texture and 2D geometric structure, the 3D point cloud is texture-less and only relevant to 3D geometric structure. In this work, we defined the 3D point cloud privacy problem and proposed an efficient privacy-preserving framework named PointFlowGMM that can support downstream classification and segmentation tasks without seeing the original data. Using a flow-based generative model, the point cloud is projected into a latent Gaussian mixture distributed subspace. We further designed a novel angular similarity loss to obfuscate the original geometric structure and reduce the model size from 767MB to 120MB without a decrease in recognition performance. The projected point cloud in the latent space is orthogonally rotated randomly to further protect the original geometric structure, the class-to-class relationship is preserved after rotation, thus, the protected point cloud can support the recognition task. We evaluated our model on multiple datasets and achieved comparable recognition results on encrypted point clouds compared to the original point clouds.
Abstract:Accurate segmentation of tubular and curvilinear structures, such as blood vessels, neurons, and road networks, is crucial in various applications. A key challenge is ensuring topological correctness while maintaining computational efficiency. Existing approaches often employ topological loss functions based on persistent homology, such as Betti error, to enforce structural consistency. However, these methods suffer from high computational costs and are insensitive to pixel-level accuracy, often requiring additional loss terms like Dice or MSE to compensate. To address these limitations, we propose \textbf{SDF-TopoNet}, an improved topology-aware segmentation framework that enhances both segmentation accuracy and training efficiency. Our approach introduces a novel two-stage training strategy. In the pre-training phase, we utilize the signed distance function (SDF) as an auxiliary learning target, allowing the model to encode topological information without directly relying on computationally expensive topological loss functions. In the fine-tuning phase, we incorporate a dynamic adapter alongside a refined topological loss to ensure topological correctness while mitigating overfitting and computational overhead. We evaluate our method on five benchmark datasets. Experimental results demonstrate that SDF-TopoNet outperforms existing methods in both topological accuracy and quantitative segmentation metrics, while significantly reducing training complexity.
Abstract:A longstanding challenge in mental well-being support is the reluctance of people to adopt psychologically beneficial activities, often due to a lack of motivation, low perceived trustworthiness, and limited personalization of recommendations. Chatbots have shown promise in promoting positive mental health practices, yet their rigid interaction flows and less human-like conversational experiences present significant limitations. In this work, we explore whether the anthropomorphic design (both LLM's persona design and conversational experience design) can enhance users' perception of the system and their willingness to adopt mental well-being activity recommendations. To this end, we introduce Sunnie, an anthropomorphic LLM-based conversational agent designed to offer personalized guidance for mental well-being support through multi-turn conversation and activity recommendations based on positive psychological theory. An empirical user study comparing the user experience with Sunnie and with a traditional survey-based activity recommendation system suggests that the anthropomorphic characteristics of Sunnie significantly enhance users' perception of the system and the overall usability; nevertheless, users' willingness to adopt activity recommendations did not change significantly.