Abstract:The evolution of Diffusion Models has dramatically improved image generation quality, making it increasingly difficult to differentiate between real and generated images. This development, while impressive, also raises significant privacy and security concerns. In response to this, we propose a novel Latent REconstruction error guided feature REfinement method (LaRE^2) for detecting the diffusion-generated images. We come up with the Latent Reconstruction Error (LaRE), the first reconstruction-error based feature in the latent space for generated image detection. LaRE surpasses existing methods in terms of feature extraction efficiency while preserving crucial cues required to differentiate between the real and the fake. To exploit LaRE, we propose an Error-Guided feature REfinement module (EGRE), which can refine the image feature guided by LaRE to enhance the discriminativeness of the feature. Our EGRE utilizes an align-then-refine mechanism, which effectively refines the image feature for generated-image detection from both spatial and channel perspectives. Extensive experiments on the large-scale GenImage benchmark demonstrate the superiority of our LaRE^2, which surpasses the best SoTA method by up to 11.9%/12.1% average ACC/AP across 8 different image generators. LaRE also surpasses existing methods in terms of feature extraction cost, delivering an impressive speed enhancement of 8 times.
Abstract:Large-scale pre-trained vision models (PVMs) have shown great potential for adaptability across various downstream vision tasks. However, with state-of-the-art PVMs growing to billions or even trillions of parameters, the standard full fine-tuning paradigm is becoming unsustainable due to high computational and storage demands. In response, researchers are exploring parameter-efficient fine-tuning (PEFT), which seeks to exceed the performance of full fine-tuning with minimal parameter modifications. This survey provides a comprehensive overview and future directions for visual PEFT, offering a systematic review of the latest advancements. First, we provide a formal definition of PEFT and discuss model pre-training methods. We then categorize existing methods into three categories: addition-based, partial-based, and unified-based. Finally, we introduce the commonly used datasets and applications and suggest potential future research challenges. A comprehensive collection of resources is available at https://github.com/synbol/Awesome-Parameter-Efficient-Transfer-Learning.
Abstract:Large-scale pre-trained models have achieved remarkable success in various computer vision tasks. A standard approach to leverage these models is to fine-tune all model parameters for downstream tasks, which poses challenges in terms of computational and storage costs. Recently, inspired by Natural Language Processing (NLP), parameter-efficient transfer learning has been successfully applied to vision tasks. However, most existing techniques primarily focus on single-task adaptation, and despite limited research on multi-task adaptation, these methods often exhibit suboptimal training and inference efficiency. In this paper, we first propose an once-for-all Vision Multi-Task Adapter (VMT-Adapter), which strikes approximately O(1) training and inference efficiency w.r.t task number. Concretely, VMT-Adapter shares the knowledge from multiple tasks to enhance cross-task interaction while preserves task-specific knowledge via independent knowledge extraction modules. Notably, since task-specific modules require few parameters, VMT-Adapter can handle an arbitrary number of tasks with a negligible increase of trainable parameters. We also propose VMT-Adapter-Lite, which further reduces the trainable parameters by learning shared parameters between down- and up-projections. Extensive experiments on four dense scene understanding tasks demonstrate the superiority of VMT-Adapter(-Lite), achieving a 3.96%(1.34%) relative improvement compared to single-task full fine-tuning, while utilizing merely ~1% (0.36%) trainable parameters of the pre-trained model.
Abstract:Multi-Task Learning (MTL) is designed to train multiple correlated tasks simultaneously, thereby enhancing the performance of individual tasks. Typically, a multi-task network structure consists of a shared backbone and task-specific decoders. However, the complexity of the decoders increases with the number of tasks. To tackle this challenge, we integrate the decoder-free vision-language model CLIP, which exhibits robust zero-shot generalization capability. Recently, parameter-efficient transfer learning methods have been extensively explored with CLIP for adapting to downstream tasks, where prompt tuning showcases strong potential. Nevertheless, these methods solely fine-tune a single modality (text or visual), disrupting the modality structure of CLIP. In this paper, we first propose Multi-modal Alignment Prompt (MmAP) for CLIP, which aligns text and visual modalities during fine-tuning process. Building upon MmAP, we develop an innovative multi-task prompt learning framework. On the one hand, to maximize the complementarity of tasks with high similarity, we utilize a gradient-driven task grouping method that partitions tasks into several disjoint groups and assign a group-shared MmAP to each group. On the other hand, to preserve the unique characteristics of each task, we assign an task-specific MmAP to each task. Comprehensive experiments on two large multi-task learning datasets demonstrate that our method achieves significant performance improvements compared to full fine-tuning while only utilizing approximately 0.09% of trainable parameters.
Abstract:The Contrastive Language-Image Pre-training (CLIP) has recently shown remarkable generalization on "zero-shot" training and has applied to many downstream tasks. We explore the adaptation of CLIP to achieve a more efficient and generalized action recognition method. We propose that the key lies in explicitly modeling the motion cues flowing in video frames. To that end, we design a two-stream motion modeling block to capture motion and spatial information at the same time. And then, the obtained motion cues are utilized to drive a dynamic prompts learner to generate motion-aware prompts, which contain much semantic information concerning human actions. In addition, we propose a multimodal communication block to achieve a collaborative learning and further improve the performance. We conduct extensive experiments on HMDB-51, UCF-101, and Kinetics-400 datasets. Our method outperforms most existing state-of-the-art methods by a significant margin on "few-shot" and "zero-shot" training. We also achieve competitive performance on "closed-set" training with extremely few trainable parameters and additional computational costs.
Abstract:Greedy-NMS inherently raises a dilemma, where a lower NMS threshold will potentially lead to a lower recall rate and a higher threshold introduces more false positives. This problem is more severe in pedestrian detection because the instance density varies more intensively. However, previous works on NMS don't consider or vaguely consider the factor of the existent of nearby pedestrians. Thus, we propose Nearby Objects Hallucinator (NOH), which pinpoints the objects nearby each proposal with a Gaussian distribution, together with NOH-NMS, which dynamically eases the suppression for the space that might contain other objects with a high likelihood. Compared to Greedy-NMS, our method, as the state-of-the-art, improves by $3.9\%$ AP, $5.1\%$ Recall, and $0.8\%$ $\text{MR}^{-2}$ on CrowdHuman to $89.0\%$ AP and $92.9\%$ Recall, and $43.9\%$ $\text{MR}^{-2}$ respectively.