Abstract:The growing importance of data visualization in business intelligence and data science emphasizes the need for tools that can efficiently generate meaningful visualizations from large datasets. Existing tools fall into two main categories: human-powered tools (e.g., Tableau and PowerBI), which require intensive expert involvement, and AI-powered automated tools (e.g., Draco and Table2Charts), which often fall short of guessing specific user needs. In this paper, we aim to achieve the best of both worlds. Our key idea is to initially auto-generate a set of high-quality visualizations to minimize manual effort, then refine this process iteratively with user feedback to more closely align with their needs. To this end, we present HAIChart, a reinforcement learning-based framework designed to iteratively recommend good visualizations for a given dataset by incorporating user feedback. Specifically, we propose a Monte Carlo Graph Search-based visualization generation algorithm paired with a composite reward function to efficiently explore the visualization space and automatically generate good visualizations. We devise a visualization hints mechanism to actively incorporate user feedback, thus progressively refining the visualization generation module. We further prove that the top-k visualization hints selection problem is NP-hard and design an efficient algorithm. We conduct both quantitative evaluations and user studies, showing that HAIChart significantly outperforms state-of-the-art human-powered tools (21% better at Recall and 1.8 times faster) and AI-powered automatic tools (25.1% and 14.9% better in terms of Hit@3 and R10@30, respectively).
Abstract:Looming detection plays an important role in insect collision prevention systems. As a vital capability evolutionary survival, it has been extensively studied in neuroscience and is attracting increasing research interest in robotics due to its close relationship with collision detection and navigation. Visual cues such as angular size, angular velocity, and expansion have been widely studied for looming detection by means of optic flow or elementary neural computing research. However, a critical visual motion cue has been long neglected because it is so easy to be confused with expansion, that is radial-opponent-motion (ROM). Recent research on the discovery of LPLC2, a ROM-sensitive neuron in Drosophila, has revealed its ultra-selectivity because it only responds to stimuli with focal, outward movement. This characteristic of ROM-sensitivity is consistent with the demand for collision detection because it is strongly associated with danger looming that is moving towards the center of the observer. Thus, we hope to extend the well-studied neural model of the lobula giant movement detector (LGMD) with ROM-sensibility in order to enhance robustness and accuracy at the same time. In this paper, we investigate the potential to extend an image velocity-based looming detector, the lobula giant movement detector (LGMD), with ROM-sensibility. To achieve this, we propose the mathematical definition of ROM and its main property, the radial motion opponency (RMO). Then, a synaptic neuropile that analogizes the synaptic processing of LPLC2 is proposed in the form of lateral inhibition and attention. Thus, our proposed model is the first to perform both image velocity selectivity and ROM sensitivity. Systematic experiments are conducted to exhibit the huge potential of the proposed bio-inspired looming detector.