Abstract:The sparsity of multipaths in wideband channel has motivated the use of compressed sensing for channel estimation. In this letter, we propose an entirely different approach to sparse channel estimation. We exploit the fact that $L$ taps of channel impulse response in time domain constitute a non-orthogonal superposition of $L$ geometric sequences in frequency domain. This converts the channel estimation problem into the extraction of the parameters of geometric sequences. Notably, the proposed scheme achieves the error-free estimation of the whole bandwidth with a few pilot symbols if the excess delay is bounded to a certain value.
Abstract:This letter introduces a new denoiser that modifies the structure of denoising autoencoder (DAE), namely noise learning based DAE (nlDAE). The proposed nlDAE learns the noise instead of the original data. Then, the denoising is performed by subtracting the regenerated noise from the noisy input. Hence, nlDAE is more effective than DAE when the noise is simpler to regenerate than the original data. To validate the performance of nlDAE, we provide two case studies: symbol demodulation and precise localization. Numerical results suggest that nlDAE requires smaller latent space dimension and less training dataset compared to DAE.