Abstract:Software is one of the most powerful tools that we humans have at our disposal; it allows a skilled programmer to interact with the world in complex and profound ways. At the same time, thanks to improvements in large language models (LLMs), there has also been a rapid development in AI agents that interact with and affect change in their surrounding environments. In this paper, we introduce OpenDevin, a platform for the development of powerful and flexible AI agents that interact with the world in similar ways to those of a human developer: by writing code, interacting with a command line, and browsing the web. We describe how the platform allows for the implementation of new agents, safe interaction with sandboxed environments for code execution, coordination between multiple agents, and incorporation of evaluation benchmarks. Based on our currently incorporated benchmarks, we perform an evaluation of agents over 15 challenging tasks, including software engineering (e.g., SWE-Bench) and web browsing (e.g., WebArena), among others. Released under the permissive MIT license, OpenDevin is a community project spanning academia and industry with more than 1.3K contributions from over 160 contributors and will improve going forward.
Abstract:In the burgeoning field of large language models (LLMs), the assessment of fundamental knowledge remains a critical challenge, particularly for models tailored to Chinese language and culture. This paper introduces FoundaBench, a pioneering benchmark designed to rigorously evaluate the fundamental knowledge capabilities of Chinese LLMs. FoundaBench encompasses a diverse array of 3354 multiple-choice questions across common sense and K-12 educational subjects, meticulously curated to reflect the breadth and depth of everyday and academic knowledge. We present an extensive evaluation of 12 state-of-the-art LLMs using FoundaBench, employing both traditional assessment methods and our CircularEval protocol to mitigate potential biases in model responses. Our results highlight the superior performance of models pre-trained on Chinese corpora, and reveal a significant disparity between models' reasoning and memory recall capabilities. The insights gleaned from FoundaBench evaluations set a new standard for understanding the fundamental knowledge of LLMs, providing a robust framework for future advancements in the field.