Abstract:Efficient data selection is crucial to accelerate the pretraining of large language models (LLMs). While various methods have been proposed to enhance data efficiency, limited research has addressed the inherent conflicts between these approaches to achieve optimal data selection for LLM pretraining. To tackle this problem, we propose a novel multi-agent collaborative data selection mechanism. In this framework, each data selection method serves as an independent agent, and an agent console is designed to dynamically integrate the information from all agents throughout the LLM training process. We conduct extensive empirical studies to evaluate our multi-agent framework. The experimental results demonstrate that our approach significantly improves data efficiency, accelerates convergence in LLM training, and achieves an average performance gain of 10.5% across multiple language model benchmarks compared to the state-of-the-art methods.
Abstract:Data selection is of great significance in pre-training large language models, given the variation in quality within the large-scale available training corpora. To achieve this, researchers are currently investigating the use of data influence to measure the importance of data instances, $i.e.,$ a high influence score indicates that incorporating this instance to the training set is likely to enhance the model performance. Consequently, they select the top-$k$ instances with the highest scores. However, this approach has several limitations. (1) Computing the influence of all available data is time-consuming. (2) The selected data instances are not diverse enough, which may hinder the pre-trained model's ability to generalize effectively to various downstream tasks. In this paper, we introduce \texttt{Quad}, a data selection approach that considers both quality and diversity by using data influence to achieve state-of-the-art pre-training results. In particular, noting that attention layers capture extensive semantic details, we have adapted the accelerated $iHVP$ computation methods for attention layers, enhancing our ability to evaluate the influence of data, $i.e.,$ its quality. For the diversity, \texttt{Quad} clusters the dataset into similar data instances within each cluster and diverse instances across different clusters. For each cluster, if we opt to select data from it, we take some samples to evaluate the influence to prevent processing all instances. To determine which clusters to select, we utilize the classic Multi-Armed Bandit method, treating each cluster as an arm. This approach favors clusters with highly influential instances (ensuring high quality) or clusters that have been selected less frequently (ensuring diversity), thereby well balancing between quality and diversity.
Abstract:Empathetic response generation endows agents with the capability to comprehend dialogue contexts and react to expressed emotions. Previous works predominantly focus on leveraging the speaker's emotional labels, but ignore the importance of emotion cause reasoning in empathetic response generation, which hinders the model's capacity for further affective understanding and cognitive inference. In this paper, we propose a cause-aware empathetic generation approach by integrating emotions and causes through a well-designed Chain-of-Thought (CoT) prompt on Large Language Models (LLMs). Our approach can greatly promote LLMs' performance of empathy by instruction tuning and enhancing the role awareness of an empathetic listener in the prompt. Additionally, we propose to incorporate cause-oriented external knowledge from COMET into the prompt, which improves the diversity of generation and alleviates conflicts between internal and external knowledge at the same time. Experimental results on the benchmark dataset demonstrate that our approach on LLaMA-7b achieves state-of-the-art performance in both automatic and human evaluations.
Abstract:Large Language Models (LLMs) have demonstrated impressive capabilities across a wide range of tasks. However, their proficiency and reliability in the specialized domain of Data Analysis, particularly with a focus on data-driven thinking, remain uncertain. To bridge this gap, we introduce BIBench, a comprehensive benchmark designed to evaluate the data analysis capabilities of LLMs within the context of Business Intelligence (BI). BIBench assesses LLMs across three dimensions: 1) BI foundational knowledge, evaluating the models' numerical reasoning and familiarity with financial concepts; 2) BI knowledge application, determining the models' ability to quickly comprehend textual information and generate analysis questions from multiple views; and 3) BI technical skills, examining the models' use of technical knowledge to address real-world data analysis challenges. BIBench comprises 11 sub-tasks, spanning three categories of task types: classification, extraction, and generation. Additionally, we've developed BIChat, a domain-specific dataset with over a million data points, to fine-tune LLMs. We will release BIBenchmark, BIChat, and the evaluation scripts at \url{https://github.com/cubenlp/BIBench}. This benchmark aims to provide a measure for in-depth analysis of LLM abilities and foster the advancement of LLMs in the field of data analysis.