Abstract:Text-to-3D generation is a valuable technology in virtual reality and digital content creation. While recent works have pushed the boundaries of text-to-3D generation, producing high-fidelity 3D objects with inefficient prompts and simulating their physics-grounded motion accurately still remain unsolved challenges. To address these challenges, we present an innovative framework that utilizes the Large Language Model (LLM)-refined prompts and diffusion priors-guided Gaussian Splatting (GS) for generating 3D models with accurate appearances and geometric structures. We also incorporate a continuum mechanics-based deformation map and color regularization to synthesize vivid physics-grounded motion for the generated 3D Gaussians, adhering to the conservation of mass and momentum. By integrating text-to-3D generation with physics-grounded motion synthesis, our framework renders photo-realistic 3D objects that exhibit physics-aware motion, accurately reflecting the behaviors of the objects under various forces and constraints across different materials. Extensive experiments demonstrate that our approach achieves high-quality 3D generations with realistic physics-grounded motion.
Abstract:Vision Transformers (ViT) is known for its scalability. In this work, we target to scale down a ViT to fit in an environment with dynamic-changing resource constraints. We observe that smaller ViTs are intrinsically the sub-networks of a larger ViT with different widths. Thus, we propose a general framework, named Scala, to enable a single network to represent multiple smaller ViTs with flexible inference capability, which aligns with the inherent design of ViT to vary from widths. Concretely, Scala activates several subnets during training, introduces Isolated Activation to disentangle the smallest sub-network from other subnets, and leverages Scale Coordination to ensure each sub-network receives simplified, steady, and accurate learning objectives. Comprehensive empirical validations on different tasks demonstrate that with only one-shot training, Scala learns slimmable representation without modifying the original ViT structure and matches the performance of Separate Training. Compared with the prior art, Scala achieves an average improvement of 1.6% on ImageNet-1K with fewer parameters.
Abstract:3D anomaly detection and localization is of great significance for industrial inspection. Prior 3D anomaly detection and localization methods focus on the setting that the testing data share the same category as the training data which is normal. However, in real-world applications, the normal training data for the target 3D objects can be unavailable due to issues like data privacy or export control regulation. To tackle these challenges, we identify a new task -- zero-shot 3D anomaly detection and localization, where the training and testing classes do not overlap. To this end, we design 3DzAL, a novel patch-level contrastive learning framework based on pseudo anomalies generated using the inductive bias from task-irrelevant 3D xyz data to learn more representative feature representations. Furthermore, we train a normalcy classifier network to classify the normal patches and pseudo anomalies and utilize the classification result jointly with feature distance to design anomaly scores. Instead of directly using the patch point clouds, we introduce adversarial perturbations to the input patch xyz data before feeding into the 3D normalcy classifier for the classification-based anomaly score. We show that 3DzAL outperforms the state-of-the-art anomaly detection and localization performance.
Abstract:Recent works have shown that neural radiance fields (NeRFs) on top of parametric models have reached SOTA quality to build photorealistic head avatars from a monocular video. However, one major limitation of the NeRF-based avatars is the slow rendering speed due to the dense point sampling of NeRF, preventing them from broader utility on resource-constrained devices. We introduce LightAvatar, the first head avatar model based on neural light fields (NeLFs). LightAvatar renders an image from 3DMM parameters and a camera pose via a single network forward pass, without using mesh or volume rendering. The proposed approach, while being conceptually appealing, poses a significant challenge towards real-time efficiency and training stability. To resolve them, we introduce dedicated network designs to obtain proper representations for the NeLF model and maintain a low FLOPs budget. Meanwhile, we tap into a distillation-based training strategy that uses a pretrained avatar model as teacher to synthesize abundant pseudo data for training. A warping field network is introduced to correct the fitting error in the real data so that the model can learn better. Extensive experiments suggest that our method can achieve new SOTA image quality quantitatively or qualitatively, while being significantly faster than the counterparts, reporting 174.1 FPS (512x512 resolution) on a consumer-grade GPU (RTX3090) with no customized optimization.
Abstract:Vision foundation models are renowned for their generalization ability due to massive training data. Nevertheless, they demand tremendous training resources, and the training data is often inaccessible, e.g., CLIP, DINOv2, posing great challenges to developing derivatives that could advance research in this field. In this work, we offer a very simple and general solution, named Proteus, to distill foundation models into smaller equivalents on ImageNet-1K without access to the original training data. Specifically, we remove the designs from conventional knowledge distillation settings that result in dataset bias and present three levels of training objectives, i.e., token, patch, and feature, to maximize the efficacy of knowledge transfer. In this manner, Proteus is trained at ImageNet-level costs with surprising ability, facilitating the accessibility of training foundation models for the broader research community. Leveraging DINOv2-g/14 as the teacher, Proteus-L/14 matches the performance of the Oracle method DINOv2-L/14 (142M training data) across 15 benchmarks and outperforms other vision foundation models including CLIP-L/14 (400M), OpenCLIP-L/14 (400M/2B) and SynCLR-L/14 (600M).
Abstract:Training large language models (LLMs) and multimodal LLMs necessitates significant computing resources, and existing publicly available LLMs are typically pre-trained on diverse, privately curated datasets spanning various tasks. For instance, LLaMA, Vicuna, and LLaVA are three LLM variants trained with LLaMA base models using very different training recipes, tasks, and data modalities. The training cost and complexity for such LLM variants grow rapidly. In this study, we propose to use a soup strategy to assemble these LLM variants into a single well-generalized multimodal LLM (SoupLM) in a cost-efficient manner. Assembling these LLM variants efficiently brings knowledge and specialities trained from different domains and data modalities into an integrated one (e.g., chatbot speciality from user-shared conversations for Vicuna, and visual capacity from vision-language data for LLaVA), therefore, to avoid computing costs of repetitive training on several different domains. We propose series of soup strategies to systematically benchmark performance gains across various configurations, and probe the soup behavior across base models in the interpolation space.
Abstract:Can large multimodal models have a human-like ability for emotional and social reasoning, and if so, how does it work? Recent research has discovered emergent theory-of-mind (ToM) reasoning capabilities in large language models (LLMs). LLMs can reason about people's mental states by solving various text-based ToM tasks that ask questions about the actors' ToM (e.g., human belief, desire, intention). However, human reasoning in the wild is often grounded in dynamic scenes across time. Thus, we consider videos a new medium for examining spatio-temporal ToM reasoning ability. Specifically, we ask explicit probing questions about videos with abundant social and emotional reasoning content. We develop a pipeline for multimodal LLM for ToM reasoning using video and text. We also enable explicit ToM reasoning by retrieving key frames for answering a ToM question, which reveals how multimodal LLMs reason about ToM.
Abstract:Understanding multi-agent behavior is critical across various fields. The conventional approach involves analyzing agent movements through three primary tasks: trajectory prediction, imputation, and spatial-temporal recovery. Considering the unique input formulation and constraint of these tasks, most existing methods are tailored to address only one specific task. However, in real-world applications, these scenarios frequently occur simultaneously. Consequently, methods designed for one task often fail to adapt to others, resulting in performance drops. To overcome this limitation, we propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs, adaptable to diverse scenarios. Specifically, we introduce a Ghost Spatial Masking (GSM) module embedded within a Transformer encoder for spatial feature extraction. We further extend recent successful State Space Models (SSMs), particularly the Mamba model, into a Bidirectional Temporal Mamba to effectively capture temporal dependencies. Additionally, we incorporate a Bidirectional Temporal Scaled (BTS) module to comprehensively scan trajectories while maintaining the temporal missing relationships within the sequence. We curate and benchmark three practical sports game datasets, Basketball-U, Football-U, and Soccer-U, for evaluation. Extensive experiments demonstrate the superior performance of our model. To the best of our knowledge, this is the first work that addresses this unified problem through a versatile generative framework, thereby enhancing our understanding of multi-agent movement. Our datasets, code, and model weights are available at https://github.com/colorfulfuture/UniTraj-pytorch.
Abstract:The goal of selective prediction is to allow an a model to abstain when it may not be able to deliver a reliable prediction, which is important in safety-critical contexts. Existing approaches to selective prediction typically require access to the internals of a model, require retraining a model or study only unimodal models. However, the most powerful models (e.g. GPT-4) are typically only available as black boxes with inaccessible internals, are not retrainable by end-users, and are frequently used for multimodal tasks. We study the possibility of selective prediction for vision-language models in a realistic, black-box setting. We propose using the principle of \textit{neighborhood consistency} to identify unreliable responses from a black-box vision-language model in question answering tasks. We hypothesize that given only a visual question and model response, the consistency of the model's responses over the neighborhood of a visual question will indicate reliability. It is impossible to directly sample neighbors in feature space in a black-box setting. Instead, we show that it is possible to use a smaller proxy model to approximately sample from the neighborhood. We find that neighborhood consistency can be used to identify model responses to visual questions that are likely unreliable, even in adversarial settings or settings that are out-of-distribution to the proxy model.
Abstract:Visual program synthesis is a promising approach to exploit the reasoning abilities of large language models for compositional computer vision tasks. Previous work has used few-shot prompting with frozen LLMs to synthesize visual programs. Training an LLM to write better visual programs is an attractive prospect, but it is unclear how to accomplish this. No dataset of visual programs for training exists, and acquisition of a visual program dataset cannot be easily crowdsourced due to the need for expert annotators. To get around the lack of direct supervision, we explore improving the program synthesis abilities of an LLM using feedback from interactive experience. We propose a method where we exploit existing annotations for a vision-language task to improvise a coarse reward signal for that task, treat the LLM as a policy, and apply reinforced self-training to improve the visual program synthesis ability of the LLM for that task. We describe a series of experiments on object detection, compositional visual question answering, and image-text retrieval, and show that in each case, the self-trained LLM outperforms or performs on par with few-shot frozen LLMs that are an order of magnitude larger. Website: https://zaidkhan.me/ViReP