Abstract:Recent works have shown that neural radiance fields (NeRFs) on top of parametric models have reached SOTA quality to build photorealistic head avatars from a monocular video. However, one major limitation of the NeRF-based avatars is the slow rendering speed due to the dense point sampling of NeRF, preventing them from broader utility on resource-constrained devices. We introduce LightAvatar, the first head avatar model based on neural light fields (NeLFs). LightAvatar renders an image from 3DMM parameters and a camera pose via a single network forward pass, without using mesh or volume rendering. The proposed approach, while being conceptually appealing, poses a significant challenge towards real-time efficiency and training stability. To resolve them, we introduce dedicated network designs to obtain proper representations for the NeLF model and maintain a low FLOPs budget. Meanwhile, we tap into a distillation-based training strategy that uses a pretrained avatar model as teacher to synthesize abundant pseudo data for training. A warping field network is introduced to correct the fitting error in the real data so that the model can learn better. Extensive experiments suggest that our method can achieve new SOTA image quality quantitatively or qualitatively, while being significantly faster than the counterparts, reporting 174.1 FPS (512x512 resolution) on a consumer-grade GPU (RTX3090) with no customized optimization.
Abstract:Vision foundation models are renowned for their generalization ability due to massive training data. Nevertheless, they demand tremendous training resources, and the training data is often inaccessible, e.g., CLIP, DINOv2, posing great challenges to developing derivatives that could advance research in this field. In this work, we offer a very simple and general solution, named Proteus, to distill foundation models into smaller equivalents on ImageNet-1K without access to the original training data. Specifically, we remove the designs from conventional knowledge distillation settings that result in dataset bias and present three levels of training objectives, i.e., token, patch, and feature, to maximize the efficacy of knowledge transfer. In this manner, Proteus is trained at ImageNet-level costs with surprising ability, facilitating the accessibility of training foundation models for the broader research community. Leveraging DINOv2-g/14 as the teacher, Proteus-L/14 matches the performance of the Oracle method DINOv2-L/14 (142M training data) across 15 benchmarks and outperforms other vision foundation models including CLIP-L/14 (400M), OpenCLIP-L/14 (400M/2B) and SynCLR-L/14 (600M).
Abstract:Training large language models (LLMs) and multimodal LLMs necessitates significant computing resources, and existing publicly available LLMs are typically pre-trained on diverse, privately curated datasets spanning various tasks. For instance, LLaMA, Vicuna, and LLaVA are three LLM variants trained with LLaMA base models using very different training recipes, tasks, and data modalities. The training cost and complexity for such LLM variants grow rapidly. In this study, we propose to use a soup strategy to assemble these LLM variants into a single well-generalized multimodal LLM (SoupLM) in a cost-efficient manner. Assembling these LLM variants efficiently brings knowledge and specialities trained from different domains and data modalities into an integrated one (e.g., chatbot speciality from user-shared conversations for Vicuna, and visual capacity from vision-language data for LLaVA), therefore, to avoid computing costs of repetitive training on several different domains. We propose series of soup strategies to systematically benchmark performance gains across various configurations, and probe the soup behavior across base models in the interpolation space.
Abstract:Can large multimodal models have a human-like ability for emotional and social reasoning, and if so, how does it work? Recent research has discovered emergent theory-of-mind (ToM) reasoning capabilities in large language models (LLMs). LLMs can reason about people's mental states by solving various text-based ToM tasks that ask questions about the actors' ToM (e.g., human belief, desire, intention). However, human reasoning in the wild is often grounded in dynamic scenes across time. Thus, we consider videos a new medium for examining spatio-temporal ToM reasoning ability. Specifically, we ask explicit probing questions about videos with abundant social and emotional reasoning content. We develop a pipeline for multimodal LLM for ToM reasoning using video and text. We also enable explicit ToM reasoning by retrieving key frames for answering a ToM question, which reveals how multimodal LLMs reason about ToM.
Abstract:Understanding multi-agent behavior is critical across various fields. The conventional approach involves analyzing agent movements through three primary tasks: trajectory prediction, imputation, and spatial-temporal recovery. Considering the unique input formulation and constraint of these tasks, most existing methods are tailored to address only one specific task. However, in real-world applications, these scenarios frequently occur simultaneously. Consequently, methods designed for one task often fail to adapt to others, resulting in performance drops. To overcome this limitation, we propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs, adaptable to diverse scenarios. Specifically, we introduce a Ghost Spatial Masking (GSM) module embedded within a Transformer encoder for spatial feature extraction. We further extend recent successful State Space Models (SSMs), particularly the Mamba model, into a Bidirectional Temporal Mamba to effectively capture temporal dependencies. Additionally, we incorporate a Bidirectional Temporal Scaled (BTS) module to comprehensively scan trajectories while maintaining the temporal missing relationships within the sequence. We curate and benchmark three practical sports game datasets, Basketball-U, Football-U, and Soccer-U, for evaluation. Extensive experiments demonstrate the superior performance of our model. To the best of our knowledge, this is the first work that addresses this unified problem through a versatile generative framework, thereby enhancing our understanding of multi-agent movement. Our datasets, code, and model weights are available at https://github.com/colorfulfuture/UniTraj-pytorch.
Abstract:The goal of selective prediction is to allow an a model to abstain when it may not be able to deliver a reliable prediction, which is important in safety-critical contexts. Existing approaches to selective prediction typically require access to the internals of a model, require retraining a model or study only unimodal models. However, the most powerful models (e.g. GPT-4) are typically only available as black boxes with inaccessible internals, are not retrainable by end-users, and are frequently used for multimodal tasks. We study the possibility of selective prediction for vision-language models in a realistic, black-box setting. We propose using the principle of \textit{neighborhood consistency} to identify unreliable responses from a black-box vision-language model in question answering tasks. We hypothesize that given only a visual question and model response, the consistency of the model's responses over the neighborhood of a visual question will indicate reliability. It is impossible to directly sample neighbors in feature space in a black-box setting. Instead, we show that it is possible to use a smaller proxy model to approximately sample from the neighborhood. We find that neighborhood consistency can be used to identify model responses to visual questions that are likely unreliable, even in adversarial settings or settings that are out-of-distribution to the proxy model.
Abstract:Visual program synthesis is a promising approach to exploit the reasoning abilities of large language models for compositional computer vision tasks. Previous work has used few-shot prompting with frozen LLMs to synthesize visual programs. Training an LLM to write better visual programs is an attractive prospect, but it is unclear how to accomplish this. No dataset of visual programs for training exists, and acquisition of a visual program dataset cannot be easily crowdsourced due to the need for expert annotators. To get around the lack of direct supervision, we explore improving the program synthesis abilities of an LLM using feedback from interactive experience. We propose a method where we exploit existing annotations for a vision-language task to improvise a coarse reward signal for that task, treat the LLM as a policy, and apply reinforced self-training to improve the visual program synthesis ability of the LLM for that task. We describe a series of experiments on object detection, compositional visual question answering, and image-text retrieval, and show that in each case, the self-trained LLM outperforms or performs on par with few-shot frozen LLMs that are an order of magnitude larger. Website: https://zaidkhan.me/ViReP
Abstract:Trajectory prediction is fundamental in computer vision and autonomous driving, particularly for understanding pedestrian behavior and enabling proactive decision-making. Existing approaches in this field often assume precise and complete observational data, neglecting the challenges associated with out-of-view objects and the noise inherent in sensor data due to limited camera range, physical obstructions, and the absence of ground truth for denoised sensor data. Such oversights are critical safety concerns, as they can result in missing essential, non-visible objects. To bridge this gap, we present a novel method for out-of-sight trajectory prediction that leverages a vision-positioning technique. Our approach denoises noisy sensor observations in an unsupervised manner and precisely maps sensor-based trajectories of out-of-sight objects into visual trajectories. This method has demonstrated state-of-the-art performance in out-of-sight noisy sensor trajectory denoising and prediction on the Vi-Fi and JRDB datasets. By enhancing trajectory prediction accuracy and addressing the challenges of out-of-sight objects, our work significantly contributes to improving the safety and reliability of autonomous driving in complex environments. Our work represents the first initiative towards Out-Of-Sight Trajectory prediction (OOSTraj), setting a new benchmark for future research. The code is available at \url{https://github.com/Hai-chao-Zhang/OOSTraj}.
Abstract:Trajectory prediction plays an important role in various applications, including autonomous driving, robotics, and scene understanding. Existing approaches mainly focus on developing compact neural networks to increase prediction precision on public datasets, typically employing a standardized input duration. However, a notable issue arises when these models are evaluated with varying observation lengths, leading to a significant performance drop, a phenomenon we term the Observation Length Shift. To address this issue, we introduce a general and effective framework, the FlexiLength Network (FLN), to enhance the robustness of existing trajectory prediction techniques against varying observation periods. Specifically, FLN integrates trajectory data with diverse observation lengths, incorporates FlexiLength Calibration (FLC) to acquire temporal invariant representations, and employs FlexiLength Adaptation (FLA) to further refine these representations for more accurate future trajectory predictions. Comprehensive experiments on multiple datasets, ie, ETH/UCY, nuScenes, and Argoverse 1, demonstrate the effectiveness and flexibility of our proposed FLN framework.
Abstract:Recent studies have drawn attention to the untapped potential of the "star operation" (element-wise multiplication) in network design. While intuitive explanations abound, the foundational rationale behind its application remains largely unexplored. Our study attempts to reveal the star operation's ability to map inputs into high-dimensional, non-linear feature spaces -- akin to kernel tricks -- without widening the network. We further introduce StarNet, a simple yet powerful prototype, demonstrating impressive performance and low latency under compact network structure and efficient budget. Like stars in the sky, the star operation appears unremarkable but holds a vast universe of potential. Our work encourages further exploration across tasks, with codes available at https://github.com/ma-xu/Rewrite-the-Stars.