Abstract:Large Language Models (LLMs) are widely applied to downstream domains. However, current LLMs for high-stakes domain tasks, such as financial investment and legal QA, typically generate brief answers without reasoning processes and explanations. This limits users' confidence in making decisions based on their responses. While original CoT shows promise, it lacks self-correction mechanisms during reasoning. This work introduces Domain$o1$s, which enhances LLMs' reasoning capabilities on domain tasks through supervised fine-tuning and tree search. We construct CoT-stock-2k and CoT-legal-2k datasets for fine-tuning models that activate domain-specific reasoning steps based on their judgment. Additionally, we propose Selective Tree Exploration to spontaneously explore solution spaces and sample optimal reasoning paths to improve performance. We also introduce PROOF-Score, a new metric for evaluating domain models' explainability, complementing traditional accuracy metrics with richer assessment dimensions. Extensive experiments on stock investment recommendation and legal reasoning QA tasks demonstrate Domaino1s's leading performance and explainability. Our code is available at https://anonymous.4open.science/r/Domaino1s-006F/.
Abstract:The success of Large Language Models (LLMs) in various domains has led researchers to apply them to graph-related problems by converting graph data into natural language text. However, unlike graph data, natural language inherently has sequential order. We observe that when the order of nodes or edges in the natural language description of a graph is shuffled, despite describing the same graph, model performance fluctuates between high performance and random guessing. Additionally, due to the limited input context length of LLMs, current methods typically randomly sample neighbors of target nodes as representatives of their neighborhood, which may not always be effective for accurate reasoning. To address these gaps, we introduce GraphBC. This novel model framework features an Order Selector Module to ensure proper serialization order of the graph and a Subgraph Sampling Module to sample subgraphs with better structure for better reasoning. Furthermore, we propose Graph CoT obtained through distillation, and enhance LLM's reasoning and zero-shot learning capabilities for graph tasks through instruction tuning. Experiments on multiple datasets for node classification and graph question-answering demonstrate that GraphBC improves LLMs' performance and generalization ability on graph tasks.
Abstract:Current popular Large Vision-Language Models (LVLMs) are suffering from Hallucinations on Object Attributes (HoOA), leading to incorrect determination of fine-grained attributes in the input images. Leveraging significant advancements in 3D generation from a single image, this paper proposes a novel method to mitigate HoOA in LVLMs. This method utilizes multiview images sampled from generated 3D representations as visual prompts for LVLMs, thereby providing more visual information from other viewpoints. Furthermore, we observe the input order of multiple multiview images significantly affects the performance of LVLMs. Consequently, we have devised Multiview Image Augmented VLM (MIAVLM), incorporating a Multiview Attributes Perceiver (MAP) submodule capable of simultaneously eliminating the influence of input image order and aligning visual information from multiview images with Large Language Models (LLMs). Besides, we designed and employed negative instructions to mitigate LVLMs' bias towards ``Yes" responses. Comprehensive experiments demonstrate the effectiveness of our method.
Abstract:Dynamic graph augmentation is used to improve the performance of dynamic GNNs. Most methods assume temporal locality, meaning that recent edges are more influential than earlier edges. However, for temporal changes in edges caused by random noise, overemphasizing recent edges while neglecting earlier ones may lead to the model capturing noise. To address this issue, we propose STAA (SpatioTemporal Activity-Aware Random Walk Diffusion). STAA identifies nodes likely to have noisy edges in spatiotemporal dimensions. Spatially, it analyzes critical topological positions through graph wavelet coefficients. Temporally, it analyzes edge evolution through graph wavelet coefficient change rates. Then, random walks are used to reduce the weights of noisy edges, deriving a diffusion matrix containing spatiotemporal information as an augmented adjacency matrix for dynamic GNN learning. Experiments on multiple datasets show that STAA outperforms other dynamic graph augmentation methods in node classification and link prediction tasks.
Abstract:Multimodal Large Language Models (MLLMs) utilize multimodal contexts consisting of text, images, or videos to solve various multimodal tasks. However, we find that changing the order of multimodal input can cause the model's performance to fluctuate between advanced performance and random guessing. This phenomenon exists in both single-modality (text-only or image-only) and mixed-modality (image-text-pair) contexts. Furthermore, we demonstrate that popular MLLMs pay special attention to certain multimodal context positions, particularly the beginning and end. Leveraging this special attention, we place key video frames and important image/text content in special positions within the context and submit them to the MLLM for inference. This method results in average performance gains of 14.7% for video-caption matching and 17.8% for visual question answering tasks. Additionally, we propose a new metric, Position-Invariant Accuracy (PIA), to address order bias in MLLM evaluation. Our research findings contribute to a better understanding of Multi-Modal In-Context Learning (MMICL) and provide practical strategies for enhancing MLLM performance without increasing computational costs.
Abstract:Recently, AI-generated content (AIGC) has gained significant traction due to its powerful creation capability. However, the storage and transmission of large amounts of high-quality AIGC images inevitably pose new challenges for recent file formats. To overcome this, we define a new file format for AIGC images, named AIGIF, enabling ultra-low bitrate coding of AIGC images. Unlike compressing AIGC images intuitively with pixel-wise space as existing file formats, AIGIF instead compresses the generation syntax. This raises a crucial question: Which generation syntax elements, e.g., text prompt, device configuration, etc, are necessary for compression/transmission? To answer this question, we systematically investigate the effects of three essential factors: platform, generative model, and data configuration. We experimentally find that a well-designed composable bitstream structure incorporating the above three factors can achieve an impressive compression ratio of even up to 1/10,000 while still ensuring high fidelity. We also introduce an expandable syntax in AIGIF to support the extension of the most advanced generation models to be developed in the future.
Abstract:Retrieval-augmented language models (RALMs) have recently shown great potential in mitigating the limitations of implicit knowledge in LLMs, such as untimely updating of the latest expertise and unreliable retention of long-tail knowledge. However, since the external knowledge base, as well as the retriever, can not guarantee reliability, potentially leading to the knowledge retrieved not being helpful or even misleading for LLM generation. In this paper, we introduce Supportiveness-based Knowledge Rewriting (SKR), a robust and pluggable knowledge rewriter inherently optimized for LLM generation. Specifically, we introduce the novel concept of "supportiveness"--which represents how effectively a knowledge piece facilitates downstream tasks--by considering the perplexity impact of augmented knowledge on the response text of a white-box LLM. Based on knowledge supportiveness, we first design a training data curation strategy for our rewriter model, effectively identifying and filtering out poor or irrelevant rewrites (e.g., with low supportiveness scores) to improve data efficacy. We then introduce the direct preference optimization (DPO) algorithm to align the generated rewrites to optimal supportiveness, guiding the rewriter model to summarize augmented content that better improves the final response. Comprehensive evaluations across six popular knowledge-intensive tasks and four LLMs have demonstrated the effectiveness and superiority of SKR. With only 7B parameters, SKR has shown better knowledge rewriting capability over GPT-4, the current state-of-the-art general-purpose LLM.
Abstract:Event Extraction (EE) is one of the essential tasks in information extraction, which aims to detect event mentions from text and find the corresponding argument roles. The EE task can be abstracted as a process of matching the semantic definitions and argument structures of event types with the target text. This paper encodes the semantic features of event types and makes structural matching with target text. Specifically, Semantic Type Embedding (STE) and Dynamic Structure Encoder (DSE) modules are proposed. Also, the Joint Structural Semantic Matching (JSSM) model is built to jointly perform event detection and argument extraction tasks through a bidirectional attention layer. The experimental results on the ACE2005 dataset indicate that our model achieves a significant performance improvement
Abstract:In theory, vector quantization (VQ) is always better than scalar quantization (SQ) in terms of rate-distortion (R-D) performance. Recent state-of-the-art methods for neural image compression are mainly based on nonlinear transform coding (NTC) with uniform scalar quantization, overlooking the benefits of VQ due to its exponentially increased complexity. In this paper, we first investigate on some toy sources, demonstrating that even if modern neural networks considerably enhance the compression performance of SQ with nonlinear transform, there is still an insurmountable chasm between SQ and VQ. Therefore, revolving around VQ, we propose a novel framework for neural image compression named Nonlinear Vector Transform Coding (NVTC). NVTC solves the critical complexity issue of VQ through (1) a multi-stage quantization strategy and (2) nonlinear vector transforms. In addition, we apply entropy-constrained VQ in latent space to adaptively determine the quantization boundaries for joint rate-distortion optimization, which improves the performance both theoretically and experimentally. Compared to previous NTC approaches, NVTC demonstrates superior rate-distortion performance, faster decoding speed, and smaller model size. Our code is available at https://github.com/USTC-IMCL/NVTC
Abstract:Answering natural language questions on knowledge graphs (KGQA) remains a great challenge in terms of understanding complex questions via multi-hop reasoning. Previous efforts usually exploit large-scale entity-related text corpora or knowledge graph (KG) embeddings as auxiliary information to facilitate answer selection. However, the rich semantics implied in off-the-shelf relation paths between entities is far from well explored. This paper proposes improving multi-hop KGQA by exploiting relation paths' hybrid semantics. Specifically, we integrate explicit textual information and implicit KG structural features of relation paths based on a novel rotate-and-scale entity link prediction framework. Extensive experiments on three existing KGQA datasets demonstrate the superiority of our method, especially in multi-hop scenarios. Further investigation confirms our method's systematical coordination between questions and relation paths to identify answer entities.