Abstract:The precise prediction of multi-scale traffic is a ubiquitous challenge in the urbanization process for car owners, road administrators, and governments. In the case of complex road networks, current and past traffic information from both upstream and downstream roads are crucial since various road networks have different semantic information about traffic. Rationalizing the utilization of semantic information can realize short-term, long-term, and unseen road traffic prediction. As the demands of multi-scale traffic analysis increase, on-demand interactions and visualizations are expected to be available for transportation participants. We have designed a multi-scale traffic generation system, namely TrafficGPT, using three AI agents to process multi-scale traffic data, conduct multi-scale traffic analysis, and present multi-scale visualization results. TrafficGPT consists of three essential AI agents: 1) a text-to-demand agent that is employed with Question & Answer AI to interact with users and extract prediction tasks through texts; 2) a traffic prediction agent that leverages multi-scale traffic data to generate temporal features and similarity, and fuse them with limited spatial features and similarity, to achieve accurate prediction of three tasks; and 3) a suggestion and visualization agent that uses the prediction results to generate suggestions and visualizations, providing users with a comprehensive understanding of traffic conditions. Our TrafficGPT system focuses on addressing concerns about traffic prediction from transportation participants, and conducted extensive experiments on five real-world road datasets to demonstrate its superior predictive and interactive performance
Abstract:The past few years have witnessed the immense success of object detection, while current excellent detectors struggle on tackling size-limited instances. Concretely, the well-known challenge of low overlaps between the priors and object regions leads to a constrained sample pool for optimization, and the paucity of discriminative information further aggravates the recognition. To alleviate the aforementioned issues, we propose CFINet, a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning. Firstly, we introduce Coarse-to-fine RPN (CRPN) to ensure sufficient and high-quality proposals for small objects through the dynamic anchor selection strategy and cascade regression. Then, we equip the conventional detection head with a Feature Imitation (FI) branch to facilitate the region representations of size-limited instances that perplex the model in an imitation manner. Moreover, an auxiliary imitation loss following supervised contrastive learning paradigm is devised to optimize this branch. When integrated with Faster RCNN, CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A, underscoring its superiority over baseline detector and other mainstream detection approaches.
Abstract:Meta learning recently has been heavily researched and helped advance the contemporary machine learning. However, achieving well-performing meta-learning model requires a large amount of training tasks with high-quality meta-data representing the underlying task generalization goal, which is sometimes difficult and expensive to obtain for real applications. Current meta-data-driven meta-learning approaches, however, are fairly hard to train satisfactory meta-models with imperfect training tasks. To address this issue, we suggest a meta-knowledge informed meta-learning (MKIML) framework to improve meta-learning by additionally integrating compensated meta-knowledge into meta-learning process. We preliminarily integrate meta-knowledge into meta-objective via using an appropriate meta-regularization (MR) objective to regularize capacity complexity of the meta-model function class to facilitate better generalization on unseen tasks. As a practical implementation, we introduce data augmentation consistency to encode invariance as meta-knowledge for instantiating MR objective, denoted by DAC-MR. The proposed DAC-MR is hopeful to learn well-performing meta-models from training tasks with noisy, sparse or unavailable meta-data. We theoretically demonstrate that DAC-MR can be treated as a proxy meta-objective used to evaluate meta-model without high-quality meta-data. Besides, meta-data-driven meta-loss objective combined with DAC-MR is capable of achieving better meta-level generalization. 10 meta-learning tasks with different network architectures and benchmarks substantiate the capability of our DAC-MR on aiding meta-model learning. Fine performance of DAC-MR are obtained across all settings, and are well-aligned with our theoretical insights. This implies that our DAC-MR is problem-agnostic, and hopeful to be readily applied to extensive meta-learning problems and tasks.
Abstract:With the rise of deep convolutional neural networks, object detection has achieved prominent advances in past years. However, such prosperity could not camouflage the unsatisfactory situation of Small Object Detection (SOD), one of the notoriously challenging tasks in computer vision, owing to the poor visual appearance and noisy representation caused by the intrinsic structure of small targets. In addition, large-scale dataset for benchmarking small object detection methods remains a bottleneck. In this paper, we first conduct a thorough review of small object detection. Then, to catalyze the development of SOD, we construct two large-scale Small Object Detection dAtasets (SODA), SODA-D and SODA-A, which focus on the Driving and Aerial scenarios respectively. SODA-D includes 24704 high-quality traffic images and 277596 instances of 9 categories. For SODA-A, we harvest 2510 high-resolution aerial images and annotate 800203 instances over 9 classes. The proposed datasets, as we know, are the first-ever attempt to large-scale benchmarks with a vast collection of exhaustively annotated instances tailored for multi-category SOD. Finally, we evaluate the performance of mainstream methods on SODA. We expect the released benchmarks could facilitate the development of SOD and spawn more breakthroughs in this field. Datasets and codes will be available soon at: \url{https://shaunyuan22.github.io/SODA}.
Abstract:Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance. Sample re-weighting methods are popularly used to alleviate this data bias issue. Most current methods, however, require to manually pre-specify the weighting schemes as well as their additional hyper-parameters relying on the characteristics of the investigated problem and training data. This makes them fairly hard to be generally applied in practical scenarios, due to their significant complexities and inter-class variations of data bias situations. To address this issue, we propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data. Specifically, by seeing each training class as a separate learning task, our method aims to extract an explicit weighting function with sample loss and task/class feature as input, and sample weight as output, expecting to impose adaptively varying weighting schemes to different sample classes based on their own intrinsic bias characteristics. Synthetic and real data experiments substantiate the capability of our method on achieving proper weighting schemes in various data bias cases, like the class imbalance, feature-independent and dependent label noise scenarios, and more complicated bias scenarios beyond conventional cases. Besides, the task-transferability of the learned weighting scheme is also substantiated, by readily deploying the weighting function learned on relatively smaller-scale CIFAR-10 dataset on much larger-scale full WebVision dataset. A performance gain can be readily achieved compared with previous SOAT ones without additional hyper-parameter tuning and meta gradient descent step. The general availability of our method for multiple robust deep learning issues, including partial-label learning, semi-supervised learning and selective classification, has also been validated.