Abstract:Existing methods for concealed visual perception (CVP) often leverage reversible strategies to decrease uncertainty, yet these are typically confined to the mask domain, leaving the potential of the RGB domain underexplored. To address this, we propose a reversible unfolding network with generative refinement, termed RUN++. Specifically, RUN++ first formulates the CVP task as a mathematical optimization problem and unfolds the iterative solution into a multi-stage deep network. This approach provides a principled way to apply reversible modeling across both mask and RGB domains while leveraging a diffusion model to resolve the resulting uncertainty. Each stage of the network integrates three purpose-driven modules: a Concealed Object Region Extraction (CORE) module applies reversible modeling to the mask domain to identify core object regions; a Context-Aware Region Enhancement (CARE) module extends this principle to the RGB domain to foster better foreground-background separation; and a Finetuning Iteration via Noise-based Enhancement (FINE) module provides a final refinement. The FINE module introduces a targeted Bernoulli diffusion model that refines only the uncertain regions of the segmentation mask, harnessing the generative power of diffusion for fine-detail restoration without the prohibitive computational cost of a full-image process. This unique synergy, where the unfolding network provides a strong uncertainty prior for the diffusion model, allows RUN++ to efficiently direct its focus toward ambiguous areas, significantly mitigating false positives and negatives. Furthermore, we introduce a new paradigm for building robust CVP systems that remain effective under real-world degradations and extend this concept into a broader bi-level optimization framework.
Abstract:Deep unfolding networks (DUNs) are widely employed in illumination degradation image restoration (IDIR) to merge the interpretability of model-based approaches with the generalization of learning-based methods. However, the performance of DUN-based methods remains considerably inferior to that of state-of-the-art IDIR solvers. Our investigation indicates that this limitation does not stem from structural shortcomings of DUNs but rather from the limited exploration of the unfolding structure, particularly for (1) constructing task-specific restoration models, (2) integrating advanced network architectures, and (3) designing DUN-specific loss functions. To address these issues, we propose a novel DUN-based method, UnfoldIR, for IDIR tasks. UnfoldIR first introduces a new IDIR model with dedicated regularization terms for smoothing illumination and enhancing texture. We unfold the iterative optimized solution of this model into a multistage network, with each stage comprising a reflectance-assisted illumination correction (RAIC) module and an illumination-guided reflectance enhancement (IGRE) module. RAIC employs a visual state space (VSS) to extract non-local features, enforcing illumination smoothness, while IGRE introduces a frequency-aware VSS to globally align similar textures, enabling mildly degraded regions to guide the enhancement of details in more severely degraded areas. This suppresses noise while enhancing details. Furthermore, given the multistage structure, we propose an inter-stage information consistent loss to maintain network stability in the final stages. This loss contributes to structural preservation and sustains the model's performance even in unsupervised settings. Experiments verify our effectiveness across 5 IDIR tasks and 3 downstream problems.
Abstract:Existing concealed object segmentation (COS) methods frequently utilize reversible strategies to address uncertain regions. However, these approaches are typically restricted to the mask domain, leaving the potential of the RGB domain underexplored. To address this, we propose the Reversible Unfolding Network (RUN), which applies reversible strategies across both mask and RGB domains through a theoretically grounded framework, enabling accurate segmentation. RUN first formulates a novel COS model by incorporating an extra residual sparsity constraint to minimize segmentation uncertainties. The iterative optimization steps of the proposed model are then unfolded into a multistage network, with each step corresponding to a stage. Each stage of RUN consists of two reversible modules: the Segmentation-Oriented Foreground Separation (SOFS) module and the Reconstruction-Oriented Background Extraction (ROBE) module. SOFS applies the reversible strategy at the mask level and introduces Reversible State Space to capture non-local information. ROBE extends this to the RGB domain, employing a reconstruction network to address conflicting foreground and background regions identified as distortion-prone areas, which arise from their separate estimation by independent modules. As the stages progress, RUN gradually facilitates reversible modeling of foreground and background in both the mask and RGB domains, directing the network's attention to uncertain regions and mitigating false-positive and false-negative results. Extensive experiments demonstrate the superior performance of RUN and highlight the potential of unfolding-based frameworks for COS and other high-level vision tasks. We will release the code and models.