Abstract:Achieving joint learning of Salient Object Detection (SOD) and Camouflaged Object Detection (COD) is extremely challenging due to their distinct object characteristics, i.e., saliency and camouflage. The only preliminary research treats them as two contradictory tasks, training models on large-scale labeled data alternately for each task and assessing them independently. However, such task-specific mechanisms fail to meet real-world demands for addressing unknown tasks effectively. To address this issue, in this paper, we pioneer a task-agnostic framework to unify SOD and COD. To this end, inspired by the agreeable nature of binary segmentation for SOD and COD, we propose a Contrastive Distillation Paradigm (CDP) to distil the foreground from the background, facilitating the identification of salient and camouflaged objects amidst their surroundings. To probe into the contribution of our CDP, we design a simple yet effective contextual decoder involving the interval-layer and global context, which achieves an inference speed of 67 fps. Besides the supervised setting, our CDP can be seamlessly integrated into unsupervised settings, eliminating the reliance on extensive human annotations. Experiments on public SOD and COD datasets demonstrate the superiority of our proposed framework in both supervised and unsupervised settings, compared with existing state-of-the-art approaches. Code is available on https://github.com/liuyi1989/Seamless-Detection.
Abstract:The recent Segment Anything Model (SAM) represents a significant breakthrough in scaling segmentation models, delivering strong performance across various downstream applications in the RGB modality. However, directly applying SAM to emerging visual modalities, such as depth and event data results in suboptimal performance in multi-modal segmentation tasks. In this paper, we make the first attempt to adapt SAM for multi-modal semantic segmentation by proposing a Mixture of Low-Rank Adaptation Experts (MoE-LoRA) tailored for different input visual modalities. By training only the MoE-LoRA layers while keeping SAM's weights frozen, SAM's strong generalization and segmentation capabilities can be preserved for downstream tasks. Specifically, to address cross-modal inconsistencies, we propose a novel MoE routing strategy that adaptively generates weighted features across modalities, enhancing multi-modal feature integration. Additionally, we incorporate multi-scale feature extraction and fusion by adapting SAM's segmentation head and introducing an auxiliary segmentation head to combine multi-scale features for improved segmentation performance effectively. Extensive experiments were conducted on three multi-modal benchmarks: DELIVER, MUSES, and MCubeS. The results consistently demonstrate that the proposed method significantly outperforms state-of-the-art approaches across diverse scenarios. Notably, under the particularly challenging condition of missing modalities, our approach exhibits a substantial performance gain, achieving an improvement of 32.15% compared to existing methods.
Abstract:Multi-modal fusion has played a vital role in multi-modal scene understanding. Most existing methods focus on cross-modal fusion involving two modalities, often overlooking more complex multi-modal fusion, which is essential for real-world applications like autonomous driving, where visible, depth, event, LiDAR, etc., are used. Besides, few attempts for multi-modal fusion, \emph{e.g.}, simple concatenation, cross-modal attention, and token selection, cannot well dig into the intrinsic shared and specific details of multiple modalities. To tackle the challenge, in this paper, we propose a Part-Whole Relational Fusion (PWRF) framework. For the first time, this framework treats multi-modal fusion as part-whole relational fusion. It routes multiple individual part-level modalities to a fused whole-level modality using the part-whole relational routing ability of Capsule Networks (CapsNets). Through this part-whole routing, our PWRF generates modal-shared and modal-specific semantics from the whole-level modal capsules and the routing coefficients, respectively. On top of that, modal-shared and modal-specific details can be employed to solve the issue of multi-modal scene understanding, including synthetic multi-modal segmentation and visible-depth-thermal salient object detection in this paper. Experiments on several datasets demonstrate the superiority of the proposed PWRF framework for multi-modal scene understanding. The source code has been released on https://github.com/liuyi1989/PWRF.
Abstract:Co-salient object detection targets at detecting co-existed salient objects among a group of images. Recently, a generalist model for segmenting everything in context, called SegGPT, is gaining public attention. In view of its breakthrough for segmentation, we can hardly wait to probe into its contribution to the task of co-salient object detection. In this report, we first design a framework to enable SegGPT for the problem of co-salient object detection. Proceed to the next step, we evaluate the performance of SegGPT on the problem of co-salient object detection on three available datasets. We achieve a finding that co-saliency scenes challenges SegGPT due to context discrepancy within a group of co-saliency images.