Abstract:We give an example of a class of distributions that is learnable in total variation distance with a finite number of samples, but not learnable under $(\varepsilon, \delta)$-differential privacy. This refutes a conjecture of Ashtiani.
Abstract:We study the problem of private distribution learning with access to public data. In this setup, which we refer to as public-private learning, the learner is given public and private samples drawn from an unknown distribution $p$ belonging to a class $\mathcal Q$, with the goal of outputting an estimate of $p$ while adhering to privacy constraints (here, pure differential privacy) only with respect to the private samples. We show that the public-private learnability of a class $\mathcal Q$ is connected to the existence of a sample compression scheme for $\mathcal Q$, as well as to an intermediate notion we refer to as list learning. Leveraging this connection: (1) approximately recovers previous results on Gaussians over $\mathbb R^d$; and (2) leads to new ones, including sample complexity upper bounds for arbitrary $k$-mixtures of Gaussians over $\mathbb R^d$, results for agnostic and distribution-shift resistant learners, as well as closure properties for public-private learnability under taking mixtures and products of distributions. Finally, via the connection to list learning, we show that for Gaussians in $\mathbb R^d$, at least $d$ public samples are necessary for private learnability, which is close to the known upper bound of $d+1$ public samples.
Abstract:We present the first $\varepsilon$-differentially private, computationally efficient algorithm that estimates the means of product distributions over $\{0,1\}^d$ accurately in total-variation distance, whilst attaining the optimal sample complexity to within polylogarithmic factors. The prior work had either solved this problem efficiently and optimally under weaker notions of privacy, or had solved it optimally while having exponential running times.
Abstract:The canonical algorithm for differentially private mean estimation is to first clip the samples to a bounded range and then add noise to their empirical mean. Clipping controls the sensitivity and, hence, the variance of the noise that we add for privacy. But clipping also introduces statistical bias. We prove that this tradeoff is inherent: no algorithm can simultaneously have low bias, low variance, and low privacy loss for arbitrary distributions. On the positive side, we show that unbiased mean estimation is possible under approximate differential privacy if we assume that the distribution is symmetric. Furthermore, we show that, even if we assume that the data is sampled from a Gaussian, unbiased mean estimation is impossible under pure or concentrated differential privacy.
Abstract:We initiate the study of differentially private (DP) estimation with access to a small amount of public data. For private estimation of d-dimensional Gaussians, we assume that the public data comes from a Gaussian that may have vanishing similarity in total variation distance with the underlying Gaussian of the private data. We show that under the constraints of pure or concentrated DP, d+1 public data samples are sufficient to remove any dependence on the range parameters of the private data distribution from the private sample complexity, which is known to be otherwise necessary without public data. For separated Gaussian mixtures, we assume that the underlying public and private distributions are the same, and we consider two settings: (1) when given a dimension-independent amount of public data, the private sample complexity can be improved polynomially in terms of the number of mixture components, and any dependence on the range parameters of the distribution can be removed in the approximate DP case; (2) when given an amount of public data linear in the dimension, the private sample complexity can be made independent of range parameters even under concentrated DP, and additional improvements can be made to the overall sample complexity.
Abstract:We prove new lower bounds for statistical estimation tasks under the constraint of $(\varepsilon, \delta)$-differential privacy. First, we provide tight lower bounds for private covariance estimation of Gaussian distributions. We show that estimating the covariance matrix in Frobenius norm requires $\Omega(d^2)$ samples, and in spectral norm requires $\Omega(d^{3/2})$ samples, both matching upper bounds up to logarithmic factors. We prove these bounds via our main technical contribution, a broad generalization of the fingerprinting method to exponential families. Additionally, using the private Assouad method of Acharya, Sun, and Zhang, we show a tight $\Omega(d/(\alpha^2 \varepsilon))$ lower bound for estimating the mean of a distribution with bounded covariance to $\alpha$-error in $\ell_2$-distance. Prior known lower bounds for all these problems were either polynomially weaker or held under the stricter condition of $(\varepsilon,0)$-differential privacy.
Abstract:We give the first polynomial-time, polynomial-sample, differentially private estimator for the mean and covariance of an arbitrary Gaussian distribution $\mathcal{N}(\mu,\Sigma)$ in $\mathbb{R}^d$. All previous estimators are either nonconstructive, with unbounded running time, or require the user to specify a priori bounds on the parameters $\mu$ and $\Sigma$. The primary new technical tool in our algorithm is a new differentially private preconditioner that takes samples from an arbitrary Gaussian $\mathcal{N}(0,\Sigma)$ and returns a matrix $A$ such that $A \Sigma A^T$ has constant condition number.
Abstract:Private data analysis suffers a costly curse of dimensionality. However, the data often has an underlying low-dimensional structure. For example, when optimizing via gradient descent, the gradients often lie in or near a low-dimensional subspace. If that low-dimensional structure can be identified, then we can avoid paying (in terms of privacy or accuracy) for the high ambient dimension. We present differentially private algorithms that take input data sampled from a low-dimensional linear subspace (possibly with a small amount of error) and output that subspace (or an approximation to it). These algorithms can serve as a pre-processing step for other procedures.
Abstract:We give new upper and lower bounds on the minimax sample complexity of differentially private mean estimation of distributions with bounded $k$-th moments. Roughly speaking, in the univariate case, we show that $n = \Theta\left(\frac{1}{\alpha^2} + \frac{1}{\alpha^{\frac{k}{k-1}}\varepsilon}\right)$ samples are necessary and sufficient to estimate the mean to $\alpha$-accuracy under $\varepsilon$-differential privacy, or any of its common relaxations. This result demonstrates a qualitatively different behavior compared to estimation absent privacy constraints, for which the sample complexity is identical for all $k \geq 2$. We also give algorithms for the multivariate setting whose sample complexity is a factor of $O(d)$ larger than the univariate case.
Abstract:Learning the parameters of Gaussian mixture models is a fundamental and widely studied problem with numerous applications. In this work, we give new algorithms for learning the parameters of a high-dimensional, well separated, Gaussian mixture model subject to the strong constraint of differential privacy. In particular, we give a differentially private analogue of the algorithm of Achlioptas and McSherry. Our algorithm has two key properties not achieved by prior work: (1) The algorithm's sample complexity matches that of the corresponding non-private algorithm up to lower order terms in a wide range of parameters. (2) The algorithm does not require strong a priori bounds on the parameters of the mixture components.