Abstract:The last decade has seen a number of advances in computationally efficient algorithms for statistical methods subject to robustness constraints. An estimator may be robust in a number of different ways: to contamination of the dataset, to heavy-tailed data, or in the sense that it preserves privacy of the dataset. We survey recent results in these areas with a focus on the problem of mean estimation, drawing technical and conceptual connections between the various forms of robustness, showing that the same underlying algorithmic ideas lead to computationally efficient estimators in all these settings.
Abstract:We consider the problem of a training data proof, where a data creator or owner wants to demonstrate to a third party that some machine learning model was trained on their data. Training data proofs play a key role in recent lawsuits against foundation models trained on web-scale data. Many prior works suggest to instantiate training data proofs using membership inference attacks. We argue that this approach is fundamentally unsound: to provide convincing evidence, the data creator needs to demonstrate that their attack has a low false positive rate, i.e., that the attack's output is unlikely under the null hypothesis that the model was not trained on the target data. Yet, sampling from this null hypothesis is impossible, as we do not know the exact contents of the training set, nor can we (efficiently) retrain a large foundation model. We conclude by offering two paths forward, by showing that data extraction attacks and membership inference on special canary data can be used to create sound training data proofs.
Abstract:We examine the relationship between learnability and robust (or agnostic) learnability for the problem of distribution learning. We show that, contrary to other learning settings (e.g., PAC learning of function classes), realizable learnability of a class of probability distributions does not imply its agnostic learnability. We go on to examine what type of data corruption can disrupt the learnability of a distribution class and what is such learnability robust against. We show that realizable learnability of a class of distributions implies its robust learnability with respect to only additive corruption, but not against subtractive corruption. We also explore related implications in the context of compression schemes and differentially private learnability.
Abstract:We revisit the efficacy of several practical methods for approximate machine unlearning developed for large-scale deep learning. In addition to complying with data deletion requests, one often-cited potential application for unlearning methods is to remove the effects of training on poisoned data. We experimentally demonstrate that, while existing unlearning methods have been demonstrated to be effective in a number of evaluation settings (e.g., alleviating membership inference attacks), they fail to remove the effects of data poisoning, across a variety of types of poisoning attacks (indiscriminate, targeted, and a newly-introduced Gaussian poisoning attack) and models (image classifiers and LLMs); even when granted a relatively large compute budget. In order to precisely characterize unlearning efficacy, we introduce new evaluation metrics for unlearning based on data poisoning. Our results suggest that a broader perspective, including a wider variety of evaluations, is required to avoid a false sense of confidence in machine unlearning procedures for deep learning without provable guarantees. Moreover, while unlearning methods show some signs of being useful to efficiently remove poisoned datapoints without having to retrain, our work suggests that these methods are not yet "ready for prime time", and currently provide limited benefit over retraining.
Abstract:We study differentially private (DP) mean estimation in the case where each person holds multiple samples. Commonly referred to as the "user-level" setting, DP here requires the usual notion of distributional stability when all of a person's datapoints can be modified. Informally, if $n$ people each have $m$ samples from an unknown $d$-dimensional distribution with bounded $k$-th moments, we show that \[n = \tilde \Theta\left(\frac{d}{\alpha^2 m} + \frac{d }{ \alpha m^{1/2} \varepsilon} + \frac{d}{\alpha^{k/(k-1)} m \varepsilon} + \frac{d}{\varepsilon}\right)\] people are necessary and sufficient to estimate the mean up to distance $\alpha$ in $\ell_2$-norm under $\varepsilon$-differential privacy (and its common relaxations). In the multivariate setting, we give computationally efficient algorithms under approximate DP (with slightly degraded sample complexity) and computationally inefficient algorithms under pure DP, and our nearly matching lower bounds hold for the most permissive case of approximate DP. Our computationally efficient estimators are based on the well known noisy-clipped-mean approach, but the analysis for our setting requires new bounds on the tails of sums of independent, vector-valued, bounded-moments random variables, and a new argument for bounding the bias introduced by clipping.
Abstract:We consider the problem of computing tight privacy guarantees for the composition of subsampled differentially private mechanisms. Recent algorithms can numerically compute the privacy parameters to arbitrary precision but must be carefully applied. Our main contribution is to address two common points of confusion. First, some privacy accountants assume that the privacy guarantees for the composition of a subsampled mechanism are determined by self-composing the worst-case datasets for the uncomposed mechanism. We show that this is not true in general. Second, Poisson subsampling is sometimes assumed to have similar privacy guarantees compared to sampling without replacement. We show that the privacy guarantees may in fact differ significantly between the two sampling schemes. In particular, we give an example of hyperparameters that result in $\varepsilon \approx 1$ for Poisson subsampling and $\varepsilon > 10$ for sampling without replacement. This occurs for some parameters that could realistically be chosen for DP-SGD.
Abstract:This paper describes a differentially private post-processing algorithm for learning fair regressors satisfying statistical parity, addressing privacy concerns of machine learning models trained on sensitive data, as well as fairness concerns of their potential to propagate historical biases. Our algorithm can be applied to post-process any given regressor to improve fairness by remapping its outputs. It consists of three steps: first, the output distributions are estimated privately via histogram density estimation and the Laplace mechanism, then their Wasserstein barycenter is computed, and the optimal transports to the barycenter are used for post-processing to satisfy fairness. We analyze the sample complexity of our algorithm and provide fairness guarantee, revealing a trade-off between the statistical bias and variance induced from the choice of the number of bins in the histogram, in which using less bins always favors fairness at the expense of error.
Abstract:Copyright infringement may occur when a generative model produces samples substantially similar to some copyrighted data that it had access to during the training phase. The notion of access usually refers to including copyrighted samples directly in the training dataset, which one may inspect to identify an infringement. We argue that such visual auditing largely overlooks a concealed copyright infringement, where one constructs a disguise that looks drastically different from the copyrighted sample yet still induces the effect of training Latent Diffusion Models on it. Such disguises only require indirect access to the copyrighted material and cannot be visually distinguished, thus easily circumventing the current auditing tools. In this paper, we provide a better understanding of such disguised copyright infringement by uncovering the disguises generation algorithm, the revelation of the disguises, and importantly, how to detect them to augment the existing toolbox. Additionally, we introduce a broader notion of acknowledgment for comprehending such indirect access.
Abstract:Machine learning models have achieved great success in supervised learning tasks for end-to-end training, which requires a large amount of labeled data that is not always feasible. Recently, many practitioners have shifted to self-supervised learning methods that utilize cheap unlabeled data to learn a general feature extractor via pre-training, which can be further applied to personalized downstream tasks by simply training an additional linear layer with limited labeled data. However, such a process may also raise concerns regarding data poisoning attacks. For instance, indiscriminate data poisoning attacks, which aim to decrease model utility by injecting a small number of poisoned data into the training set, pose a security risk to machine learning models, but have only been studied for end-to-end supervised learning. In this paper, we extend the exploration of the threat of indiscriminate attacks on downstream tasks that apply pre-trained feature extractors. Specifically, we propose two types of attacks: (1) the input space attacks, where we modify existing attacks to directly craft poisoned data in the input space. However, due to the difficulty of optimization under constraints, we further propose (2) the feature targeted attacks, where we mitigate the challenge with three stages, firstly acquiring target parameters for the linear head; secondly finding poisoned features by treating the learned feature representations as a dataset; and thirdly inverting the poisoned features back to the input space. Our experiments examine such attacks in popular downstream tasks of fine-tuning on the same dataset and transfer learning that considers domain adaptation. Empirical results reveal that transfer learning is more vulnerable to our attacks. Additionally, input space attacks are a strong threat if no countermeasures are posed, but are otherwise weaker than feature targeted attacks.
Abstract:We give an example of a class of distributions that is learnable in total variation distance with a finite number of samples, but not learnable under $(\varepsilon, \delta)$-differential privacy. This refutes a conjecture of Ashtiani.