University of Alberta
Abstract:The concept of probabilistic values, such as Beta Shapley values and weighted Banzhaf values, has gained recent attention in applications like feature attribution and data valuation. However, exact computation of these values is often exponentially expensive, necessitating approximation techniques. Prior research has shown that the choice of probabilistic values significantly impacts downstream performance, with no universally superior option. Consequently, one may have to approximate multiple candidates and select the best-performing one. Although there have been many efforts to develop efficient estimators, none are intended to approximate all probabilistic values both simultaneously and efficiently. In this work, we embark on the first exploration of achieving this goal. Adhering to the principle of maximum sample reuse, we propose a one-sample-fits-all framework parameterized by a sampling vector to approximate intermediate terms that can be converted to any probabilistic value without amplifying scalars. Leveraging the concept of $ (\epsilon, \delta) $-approximation, we theoretically identify a key formula that effectively determines the convergence rate of our framework. By optimizing the sampling vector using this formula, we obtain i) a one-for-all estimator that achieves the currently best time complexity for all probabilistic values on average, and ii) a faster generic estimator with the sampling vector optimally tuned for each probabilistic value. Particularly, our one-for-all estimator achieves the fastest convergence rate on Beta Shapley values, including the well-known Shapley value, both theoretically and empirically. Finally, we establish a connection between probabilistic values and the least square regression used in (regularized) datamodels, showing that our one-for-all estimator can solve a family of datamodels simultaneously.
Abstract:Adaptive Moment Estimation (Adam) is a cornerstone optimization algorithm in deep learning, widely recognized for its flexibility with adaptive learning rates and efficiency in handling large-scale data. However, despite its practical success, the theoretical understanding of Adam's convergence has been constrained by stringent assumptions, such as almost surely bounded stochastic gradients or uniformly bounded gradients, which are more restrictive than those typically required for analyzing stochastic gradient descent (SGD). In this paper, we introduce a novel and comprehensive framework for analyzing the convergence properties of Adam. This framework offers a versatile approach to establishing Adam's convergence. Specifically, we prove that Adam achieves asymptotic (last iterate sense) convergence in both the almost sure sense and the \(L_1\) sense under the relaxed assumptions typically used for SGD, namely \(L\)-smoothness and the ABC inequality. Meanwhile, under the same assumptions, we show that Adam attains non-asymptotic sample complexity bounds similar to those of SGD.
Abstract:Machine unlearning provides viable solutions to revoke the effect of certain training data on pre-trained model parameters. Existing approaches provide unlearning recipes for classification and generative models. However, a category of important machine learning models, i.e., contrastive learning (CL) methods, is overlooked. In this paper, we fill this gap by first proposing the framework of Machine Unlearning for Contrastive learning (MUC) and adapting existing methods. Furthermore, we observe that several methods are mediocre unlearners and existing auditing tools may not be sufficient for data owners to validate the unlearning effects in contrastive learning. We thus propose a novel method called Alignment Calibration (AC) by explicitly considering the properties of contrastive learning and optimizing towards novel auditing metrics to easily verify unlearning. We empirically compare AC with baseline methods on SimCLR, MoCo and CLIP. We observe that AC addresses drawbacks of existing methods: (1) achieving state-of-the-art performance and approximating exact unlearning (retraining); (2) allowing data owners to clearly visualize the effect caused by unlearning through black-box auditing.
Abstract:High utility and rigorous data privacy are of the main goals of a federated learning (FL) system, which learns a model from the data distributed among some clients. The latter has been tried to achieve by using differential privacy in FL (DPFL). There is often heterogeneity in clients privacy requirements, and existing DPFL works either assume uniform privacy requirements for clients or are not applicable when server is not fully trusted (our setting). Furthermore, there is often heterogeneity in batch and/or dataset size of clients, which as shown, results in extra variation in the DP noise level across clients model updates. With these sources of heterogeneity, straightforward aggregation strategies, e.g., assigning clients aggregation weights proportional to their privacy parameters will lead to lower utility. We propose Robust-HDP, which efficiently estimates the true noise level in clients model updates and reduces the noise-level in the aggregated model updates considerably. Robust-HDP improves utility and convergence speed, while being safe to the clients that may maliciously send falsified privacy parameter to server. Extensive experimental results on multiple datasets and our theoretical analysis confirm the effectiveness of Robust-HDP. Our code can be found here.
Abstract:Copyright infringement may occur when a generative model produces samples substantially similar to some copyrighted data that it had access to during the training phase. The notion of access usually refers to including copyrighted samples directly in the training dataset, which one may inspect to identify an infringement. We argue that such visual auditing largely overlooks a concealed copyright infringement, where one constructs a disguise that looks drastically different from the copyrighted sample yet still induces the effect of training Latent Diffusion Models on it. Such disguises only require indirect access to the copyrighted material and cannot be visually distinguished, thus easily circumventing the current auditing tools. In this paper, we provide a better understanding of such disguised copyright infringement by uncovering the disguises generation algorithm, the revelation of the disguises, and importantly, how to detect them to augment the existing toolbox. Additionally, we introduce a broader notion of acknowledgment for comprehending such indirect access.
Abstract:In this work, we study potential games and Markov potential games under stochastic cost and bandit feedback. We propose a variant of the Frank-Wolfe algorithm with sufficient exploration and recursive gradient estimation, which provably converges to the Nash equilibrium while attaining sublinear regret for each individual player. Our algorithm simultaneously achieves a Nash regret and a regret bound of $O(T^{4/5})$ for potential games, which matches the best available result, without using additional projection steps. Through carefully balancing the reuse of past samples and exploration of new samples, we then extend the results to Markov potential games and improve the best available Nash regret from $O(T^{5/6})$ to $O(T^{4/5})$. Moreover, our algorithm requires no knowledge of the game, such as the distribution mismatch coefficient, which provides more flexibility in its practical implementation. Experimental results corroborate our theoretical findings and underscore the practical effectiveness of our method.
Abstract:Diffusion models have become the leading distribution-learning method in recent years. Herein, we introduce structure-preserving diffusion processes, a family of diffusion processes for learning distributions that possess additional structure, such as group symmetries, by developing theoretical conditions under which the diffusion transition steps preserve said symmetry. While also enabling equivariant data sampling trajectories, we exemplify these results by developing a collection of different symmetry equivariant diffusion models capable of learning distributions that are inherently symmetric. Empirical studies, over both synthetic and real-world datasets, are used to validate the developed models adhere to the proposed theory and are capable of achieving improved performance over existing methods in terms of sample equality. We also show how the proposed models can be used to achieve theoretically guaranteed equivariant image noise reduction without prior knowledge of the image orientation.
Abstract:In neural network binarization, BinaryConnect (BC) and its variants are considered the standard. These methods apply the sign function in their forward pass and their respective gradients are backpropagated to update the weights. However, the derivative of the sign function is zero whenever defined, which consequently freezes training. Therefore, implementations of BC (e.g., BNN) usually replace the derivative of sign in the backward computation with identity or other approximate gradient alternatives. Although such practice works well empirically, it is largely a heuristic or ''training trick.'' We aim at shedding some light on these training tricks from the optimization perspective. Building from existing theory on ProxConnect (PC, a generalization of BC), we (1) equip PC with different forward-backward quantizers and obtain ProxConnect++ (PC++) that includes existing binarization techniques as special cases; (2) derive a principled way to synthesize forward-backward quantizers with automatic theoretical guarantees; (3) illustrate our theory by proposing an enhanced binarization algorithm BNN++; (4) conduct image classification experiments on CNNs and vision transformers, and empirically verify that BNN++ generally achieves competitive results on binarizing these models.
Abstract:Machine learning models have achieved great success in supervised learning tasks for end-to-end training, which requires a large amount of labeled data that is not always feasible. Recently, many practitioners have shifted to self-supervised learning methods that utilize cheap unlabeled data to learn a general feature extractor via pre-training, which can be further applied to personalized downstream tasks by simply training an additional linear layer with limited labeled data. However, such a process may also raise concerns regarding data poisoning attacks. For instance, indiscriminate data poisoning attacks, which aim to decrease model utility by injecting a small number of poisoned data into the training set, pose a security risk to machine learning models, but have only been studied for end-to-end supervised learning. In this paper, we extend the exploration of the threat of indiscriminate attacks on downstream tasks that apply pre-trained feature extractors. Specifically, we propose two types of attacks: (1) the input space attacks, where we modify existing attacks to directly craft poisoned data in the input space. However, due to the difficulty of optimization under constraints, we further propose (2) the feature targeted attacks, where we mitigate the challenge with three stages, firstly acquiring target parameters for the linear head; secondly finding poisoned features by treating the learned feature representations as a dataset; and thirdly inverting the poisoned features back to the input space. Our experiments examine such attacks in popular downstream tasks of fine-tuning on the same dataset and transfer learning that considers domain adaptation. Empirical results reveal that transfer learning is more vulnerable to our attacks. Additionally, input space attacks are a strong threat if no countermeasures are posed, but are otherwise weaker than feature targeted attacks.
Abstract:In self-supervised contrastive learning, a widely-adopted objective function is InfoNCE, which uses the heuristic cosine similarity for the representation comparison, and is closely related to maximizing the Kullback-Leibler (KL)-based mutual information. In this paper, we aim at answering two intriguing questions: (1) Can we go beyond the KL-based objective? (2) Besides the popular cosine similarity, can we design a better similarity function? We provide answers to both questions by generalizing the KL-based mutual information to the $f$-Mutual Information in Contrastive Learning ($f$-MICL) using the $f$-divergences. To answer the first question, we provide a wide range of $f$-MICL objectives which share the nice properties of InfoNCE (e.g., alignment and uniformity), and meanwhile result in similar or even superior performance. For the second question, assuming that the joint feature distribution is proportional to the Gaussian kernel, we derive an $f$-Gaussian similarity with better interpretability and empirical performance. Finally, we identify close relationships between the $f$-MICL objective and several popular InfoNCE-based objectives. Using benchmark tasks from both vision and natural language, we empirically evaluate $f$-MICL with different $f$-divergences on various architectures (SimCLR, MoCo, and MoCo v3) and datasets. We observe that $f$-MICL generally outperforms the benchmarks and the best-performing $f$-divergence is task and dataset dependent.