Abstract:Recommendation systems predominantly utilize two-tower architectures, which evaluate user-item rankings through the inner product of their respective embeddings. However, one key limitation of two-tower models is that they learn a pair-agnostic representation of users and items. In contrast, pair-wise representations either scale poorly due to their quadratic complexity or are too restrictive on the candidate pairs to rank. To address these issues, we introduce Context-based Graph Neural Networks (ContextGNNs), a novel deep learning architecture for link prediction in recommendation systems. The method employs a pair-wise representation technique for familiar items situated within a user's local subgraph, while leveraging two-tower representations to facilitate the recommendation of exploratory items. A final network then predicts how to fuse both pair-wise and two-tower recommendations into a single ranking of items. We demonstrate that ContextGNN is able to adapt to different data characteristics and outperforms existing methods, both traditional and GNN-based, on a diverse set of practical recommendation tasks, improving performance by 20% on average.
Abstract:We propose a novel fine-tuning method to achieve multi-operator learning through training a distributed neural operator with diverse function data and then zero-shot fine-tuning the neural network using physics-informed losses for downstream tasks. Operator learning effectively approximates solution operators for PDEs and various PDE-related problems, yet it often struggles to generalize to new tasks. To address this, we investigate fine-tuning a pretrained model, while carefully selecting an initialization that enables rapid adaptation to new tasks with minimal data. Our approach combines distributed learning to integrate data from various operators in pre-training, while physics-informed methods enable zero-shot fine-tuning, minimizing the reliance on downstream data. We investigate standard fine-tuning and Low-Rank Adaptation fine-tuning, applying both to train complex nonlinear target operators that are difficult to learn only using random initialization. Through comprehensive numerical examples, we demonstrate the advantages of our approach, showcasing significant improvements in accuracy. Our findings provide a robust framework for advancing multi-operator learning and highlight the potential of transfer learning techniques in this domain.
Abstract:Symbolic encoding has been used in multi-operator learning as a way to embed additional information for distinct time-series data. For spatiotemporal systems described by time-dependent partial differential equations, the equation itself provides an additional modality to identify the system. The utilization of symbolic expressions along side time-series samples allows for the development of multimodal predictive neural networks. A key challenge with current approaches is that the symbolic information, i.e. the equations, must be manually preprocessed (simplified, rearranged, etc.) to match and relate to the existing token library, which increases costs and reduces flexibility, especially when dealing with new differential equations. We propose a new token library based on SymPy to encode differential equations as an additional modality for time-series models. The proposed approach incurs minimal cost, is automated, and maintains high prediction accuracy for forecasting tasks. Additionally, we include a Bayesian filtering module that connects the different modalities to refine the learned equation. This improves the accuracy of the learned symbolic representation and the predicted time-series.
Abstract:We propose PROSE-FD, a zero-shot multimodal PDE foundational model for simultaneous prediction of heterogeneous two-dimensional physical systems related to distinct fluid dynamics settings. These systems include shallow water equations and the Navier-Stokes equations with incompressible and compressible flow, regular and complex geometries, and different buoyancy settings. This work presents a new transformer-based multi-operator learning approach that fuses symbolic information to perform operator-based data prediction, i.e. non-autoregressive. By incorporating multiple modalities in the inputs, the PDE foundation model builds in a pathway for including mathematical descriptions of the physical behavior. We pre-train our foundation model on 6 parametric families of equations collected from 13 datasets, including over 60K trajectories. Our model outperforms popular operator learning, computer vision, and multi-physics models, in benchmark forward prediction tasks. We test our architecture choices with ablation studies.
Abstract:Single-operator learning involves training a deep neural network to learn a specific operator, whereas recent work in multi-operator learning uses an operator embedding structure to train a single neural network on data from multiple operators. Thus, multi-operator learning is capable of predicting a range of operators within one model. In this work, we propose pretraining and fine-tuning strategies for solving PDEs using multi-operator learning. One key aspect is that by increasing the number of families of operators used in pretraining, a PDE foundation model can be fine-tuned to downstream tasks involving new PDEs with a limited number of samples, thus outperforming single operator neural networks. Specifically, a multi-operator learning model pre-trained with data from diverse PDE families can predict unseen operators after fine-tuning with only a limited number of operators from the new family, enabling them to serve as a data-free PDE solver. We also show that the proposed training and fine-tuning method is able to predict new operators in zero-shot prediction without samples. Additionally, we introduce a PDE-agnostic meta-learning algorithm to improve the adaptability of the model to various PDEs by providing a better parameter initialization process. To address the needs of applications with limited computing resources, we explore low-rank adaptation methods that reduce computational costs while enhancing solver accuracy. Lastly, by examining the scaling law with respect to the number of operator families, we establish and highlight its potential for broad adaptation in PDE-solving tasks.
Abstract:Grid startup, an integral component of the power system, holds strategic importance for ensuring the reliability and efficiency of the electrical grid. However, current methodologies for in-depth analysis and precise prediction of grid startup scenarios are inadequate. To address these challenges, we propose a novel method based on the Transformer-LSTM-PSO model. This model uniquely combines the Transformer's self-attention mechanism, LSTM's temporal modeling capabilities, and the parameter tuning features of the particle swarm optimization algorithm. It is designed to more effectively capture the complex temporal relationships in grid startup schemes. Our experiments demonstrate significant improvements, with our model achieving lower RMSE and MAE values across multiple datasets compared to existing benchmarks, particularly in the NYISO Electric Market dataset where the RMSE was reduced by approximately 15% and the MAE by 20% compared to conventional models. Our main contribution is the development of a Transformer-LSTM-PSO model that significantly enhances the accuracy and efficiency of smart grid startup predictions. The application of the Transformer-LSTM-PSO model represents a significant advancement in smart grid predictive analytics, concurrently fostering the development of more reliable and intelligent grid management systems.
Abstract:We present RelBench, a public benchmark for solving predictive tasks over relational databases with graph neural networks. RelBench provides databases and tasks spanning diverse domains and scales, and is intended to be a foundational infrastructure for future research. We use RelBench to conduct the first comprehensive study of Relational Deep Learning (RDL) (Fey et al., 2024), which combines graph neural network predictive models with (deep) tabular models that extract initial entity-level representations from raw tables. End-to-end learned RDL models fully exploit the predictive signal encoded in primary-foreign key links, marking a significant shift away from the dominant paradigm of manual feature engineering combined with tabular models. To thoroughly evaluate RDL against this prior gold-standard, we conduct an in-depth user study where an experienced data scientist manually engineers features for each task. In this study, RDL learns better models whilst reducing human work needed by more than an order of magnitude. This demonstrates the power of deep learning for solving predictive tasks over relational databases, opening up many new research opportunities enabled by RelBench.
Abstract:The development of autonomous agents increasingly relies on Multimodal Language Models (MLMs) to perform tasks described in natural language with GUI environments, such as websites, desktop computers, or mobile phones. Existing benchmarks for MLM agents in interactive environments are limited by their focus on a single environment, lack of detailed and generalized evaluation methods, and the complexities of constructing tasks and evaluators. To overcome these limitations, we introduce Crab, the first agent benchmark framework designed to support cross-environment tasks, incorporating a graph-based fine-grained evaluation method and an efficient mechanism for task and evaluator construction. Our framework supports multiple devices and can be easily extended to any environment with a Python interface. Leveraging Crab, we developed a cross-platform Crab Benchmark-v0 comprising 100 tasks in computer desktop and mobile phone environments. We evaluated four advanced MLMs using different single and multi-agent system configurations on this benchmark. The experimental results demonstrate that the single agent with GPT-4o achieves the best completion ratio of 35.26%. All framework code, agent code, and task datasets are publicly available at https://github.com/camel-ai/crab.
Abstract:Image anomaly detection is a popular research direction, with many methods emerging in recent years due to rapid advancements in computing. The use of artificial intelligence for image anomaly detection has been widely studied. By analyzing images of athlete posture and movement, it is possible to predict injury status and suggest necessary adjustments. Most existing methods rely on convolutional networks to extract information from irrelevant pixel data, limiting model accuracy. This paper introduces a network combining Residual Network (ResNet) and Bidirectional Gated Recurrent Unit (BiGRU), which can predict potential injury types and provide early warnings by analyzing changes in muscle and bone poses from video images. To address the high complexity of this network, the Sparrow search algorithm was used for optimization. Experiments conducted on four datasets demonstrated that our model has the smallest error in image anomaly detection compared to other models, showing strong adaptability. This provides a new approach for anomaly detection and predictive analysis in images, contributing to the sustainable development of human health and performance.
Abstract:This research delves deeply into Meta Reinforcement Learning (Meta RL) through a exploration focusing on defining generalization limits and ensuring convergence. By employing a approach this article introduces an innovative theoretical framework to meticulously assess the effectiveness and performance of Meta RL algorithms. We present an explanation of generalization limits measuring how well these algorithms can adapt to learning tasks while maintaining consistent results. Our analysis delves into the factors that impact the adaptability of Meta RL revealing the relationship, between algorithm design and task complexity. Additionally we establish convergence assurances by proving conditions under which Meta RL strategies are guaranteed to converge towards solutions. We examine the convergence behaviors of Meta RL algorithms across scenarios providing a comprehensive understanding of the driving forces behind their long term performance. This exploration covers both convergence and real time efficiency offering a perspective, on the capabilities of these algorithms.