Abstract:Standard Bayesian Optimization (BO) assumes uniform smoothness across the search space an assumption violated in multi-regime problems such as molecular conformation search through distinct energy basins or drug discovery across heterogeneous molecular scaffolds. A single GP either oversmooths sharp transitions or hallucinates noise in smooth regions, yielding miscalibrated uncertainty. We propose RAMBO, a Dirichlet Process Mixture of Gaussian Processes that automatically discovers latent regimes during optimization, each modeled by an independent GP with locally-optimized hyperparameters. We derive collapsed Gibbs sampling that analytically marginalizes latent functions for efficient inference, and introduce adaptive concentration parameter scheduling for coarse-to-fine regime discovery. Our acquisition functions decompose uncertainty into intra-regime and inter-regime components. Experiments on synthetic benchmarks and real-world applications, including molecular conformer optimization, virtual screening for drug discovery, and fusion reactor design, demonstrate consistent improvements over state-of-the-art baselines on multi-regime objectives.
Abstract:Large Language Models (LLMs) show promise for equation discovery, yet their outputs are highly sensitive to prompt phrasing, a phenomenon we term instruction brittleness. Static prompts cannot adapt to the evolving state of a multi-step generation process, causing models to plateau at suboptimal solutions. To address this, we propose NeuroSymBO, which reframes prompt engineering as a sequential decision problem. Our method maintains a discrete library of reasoning strategies and uses Bayesian Optimization to select the optimal instruction at each step based on numerical feedback. Experiments on PDE discovery benchmarks show that adaptive instruction selection significantly outperforms fixed prompts, achieving higher recovery rates with more parsimonious solutions.
Abstract:This paper introduces the MPS (Model Prediction Set), a novel framework for online model selection for nonstationary time series. Classical model selection methods, such as information criteria and cross-validation, rely heavily on the stationarity assumption and often fail in dynamic environments which undergo gradual or abrupt changes over time. Yet real-world data are rarely stationary, and model selection under nonstationarity remains a largely open problem. To tackle this challenge, we combine conformal inference with model confidence sets to develop a procedure that adaptively selects models best suited to the evolving dynamics at any given time. Concretely, the MPS updates in real time a confidence set of candidate models that covers the best model for the next time period with a specified long-run probability, while adapting to nonstationarity of unknown forms. Through simulations and real-world data analysis, we demonstrate that MPS reliably and efficiently identifies optimal models under nonstationarity, an essential capability lacking in offline methods. Moreover, MPS frequently produces high-quality sets with small cardinality, whose evolution offers deeper insights into changing dynamics. As a generic framework, MPS accommodates any data-generating process, data structure, model class, training method, and evaluation metric, making it broadly applicable across diverse problem settings.
Abstract:Graph Neural Networks (GNNs) have gained traction in Graph-based Machine Learning as a Service (GMLaaS) platforms, yet they remain vulnerable to graph-based model extraction attacks (MEAs), where adversaries reconstruct surrogate models by querying the victim model. Existing defense mechanisms, such as watermarking and fingerprinting, suffer from poor real-time performance, susceptibility to evasion, or reliance on post-attack verification, making them inadequate for handling the dynamic characteristics of graph-based MEA variants. To address these limitations, we propose ATOM, a novel real-time MEA detection framework tailored for GNNs. ATOM integrates sequential modeling and reinforcement learning to dynamically detect evolving attack patterns, while leveraging $k$-core embedding to capture the structural properties, enhancing detection precision. Furthermore, we provide theoretical analysis to characterize query behaviors and optimize detection strategies. Extensive experiments on multiple real-world datasets demonstrate that ATOM outperforms existing approaches in detection performance, maintaining stable across different time steps, thereby offering a more effective defense mechanism for GMLaaS environments.




Abstract:Physical simulations are essential tools across critical fields such as mechanical and aerospace engineering, chemistry, meteorology, etc. While neural operators, particularly the Fourier Neural Operator (FNO), have shown promise in predicting simulation results with impressive performance and efficiency, they face limitations when handling real-world scenarios involving coupled multi-physics outputs. Current neural operator methods either overlook the correlations between multiple physical processes or employ simplistic architectures that inadequately capture these relationships. To overcome these challenges, we introduce a novel coupled multi-physics neural operator learning (COMPOL) framework that extends the capabilities of Fourier operator layers to model interactions among multiple physical processes. Our approach implements feature aggregation through recurrent and attention mechanisms, enabling comprehensive modeling of coupled interactions. Our method's core is an innovative system for aggregating latent features from multi-physics processes. These aggregated features serve as enriched information sources for neural operator layers, allowing our framework to capture complex physical relationships accurately. We evaluated our coupled multi-physics neural operator across diverse physical simulation tasks, including biological systems, fluid mechanics, and multiphase flow in porous media. Our proposed model demonstrates a two to three-fold improvement in predictive performance compared to existing approaches.
Abstract:The widespread application of Electronic Health Records (EHR) data in the medical field has led to early successes in disease risk prediction using deep learning methods. These methods typically require extensive data for training due to their large parameter sets. However, existing works do not exploit the full potential of EHR data. A significant challenge arises from the infrequent occurrence of many medical codes within EHR data, limiting their clinical applicability. Current research often lacks in critical areas: 1) incorporating disease domain knowledge; 2) heterogeneously learning disease representations with rich meanings; 3) capturing the temporal dynamics of disease progression. To overcome these limitations, we introduce a novel heterogeneous graph learning model designed to assimilate disease domain knowledge and elucidate the intricate relationships between drugs and diseases. This model innovatively incorporates temporal data into visit-level embeddings and leverages a time-aware transformer alongside an adaptive attention mechanism to produce patient representations. When evaluated on two healthcare datasets, our approach demonstrated notable enhancements in both prediction accuracy and interpretability over existing methodologies, signifying a substantial advancement towards personalized and proactive healthcare management.




Abstract:Multi-fidelity surrogate learning is important for physical simulation related applications in that it avoids running numerical solvers from scratch, which is known to be costly, and it uses multi-fidelity examples for training and greatly reduces the cost of data collection. Despite the variety of existing methods, they all build a model to map the input parameters outright to the solution output. Inspired by the recent breakthrough in generative models, we take an alternative view and consider the solution output as generated from random noises. We develop a diffusion-generative multi-fidelity (DGMF) learning method based on stochastic differential equations (SDE), where the generation is a continuous denoising process. We propose a conditional score model to control the solution generation by the input parameters and the fidelity. By conditioning on additional inputs (temporal or spacial variables), our model can efficiently learn and predict multi-dimensional solution arrays. Our method naturally unifies discrete and continuous fidelity modeling. The advantage of our method in several typical applications shows a promising new direction for multi-fidelity learning.




Abstract:Tucker decomposition is a powerful tensor model to handle multi-aspect data. It demonstrates the low-rank property by decomposing the grid-structured data as interactions between a core tensor and a set of object representations (factors). A fundamental assumption of such decomposition is that there were finite objects in each aspect or mode, corresponding to discrete indexes of data entries. However, many real-world data are not naturally posed in the setting. For example, geographic data is represented as continuous indexes of latitude and longitude coordinates, and cannot fit tensor models directly. To generalize Tucker decomposition to such scenarios, we propose Functional Bayesian Tucker Decomposition (FunBaT). We treat the continuous-indexed data as the interaction between the Tucker core and a group of latent functions. We use Gaussian processes (GP) as functional priors to model the latent functions, and then convert the GPs into a state-space prior by constructing an equivalent stochastic differential equation (SDE) to reduce computational cost. An efficient inference algorithm is further developed for scalable posterior approximation based on advanced message-passing techniques. The advantage of our method is shown in both synthetic data and several real-world applications.




Abstract:Machine learning based solvers have garnered much attention in physical simulation and scientific computing, with a prominent example, physics-informed neural networks (PINNs). However, PINNs often struggle to solve high-frequency and multi-scale PDEs, which can be due to spectral bias during neural network training. To address this problem, we resort to the Gaussian process (GP) framework. To flexibly capture the dominant frequencies, we model the power spectrum of the PDE solution with a student t mixture or Gaussian mixture. We then apply the inverse Fourier transform to obtain the covariance function (according to the Wiener-Khinchin theorem). The covariance derived from the Gaussian mixture spectrum corresponds to the known spectral mixture kernel. We are the first to discover its rationale and effectiveness for PDE solving. Next,we estimate the mixture weights in the log domain, which we show is equivalent to placing a Jeffreys prior. It automatically induces sparsity, prunes excessive frequencies, and adjusts the remaining toward the ground truth. Third, to enable efficient and scalable computation on massive collocation points, which are critical to capture high frequencies, we place the collocation points on a grid, and multiply our covariance function at each input dimension. We use the GP conditional mean to predict the solution and its derivatives so as to fit the boundary condition and the equation itself. As a result, we can derive a Kronecker product structure in the covariance matrix. We use Kronecker product properties and multilinear algebra to greatly promote computational efficiency and scalability, without any low-rank approximations. We show the advantage of our method in systematic experiments.




Abstract:Practical tensor data is often along with time information. Most existing temporal decomposition approaches estimate a set of fixed factors for the objects in each tensor mode, and hence cannot capture the temporal evolution of the objects' representation. More important, we lack an effective approach to capture such evolution from streaming data, which is common in real-world applications. To address these issues, we propose Streaming Factor Trajectory Learning for temporal tensor decomposition. We use Gaussian processes (GPs) to model the trajectory of factors so as to flexibly estimate their temporal evolution. To address the computational challenges in handling streaming data, we convert the GPs into a state-space prior by constructing an equivalent stochastic differential equation (SDE). We develop an efficient online filtering algorithm to estimate a decoupled running posterior of the involved factor states upon receiving new data. The decoupled estimation enables us to conduct standard Rauch-Tung-Striebel smoothing to compute the full posterior of all the trajectories in parallel, without the need for revisiting any previous data. We have shown the advantage of SFTL in both synthetic tasks and real-world applications. The code is available at {https://github.com/xuangu-fang/Streaming-Factor-Trajectory-Learning}.