Abstract:With the advent of the information explosion era, the importance of recommendation systems in various applications is increasingly significant. Traditional collaborative filtering algorithms are widely used due to their effectiveness in capturing user behavior patterns, but they encounter limitations when dealing with cold start problems and data sparsity. Large Language Models (LLMs), with their strong natural language understanding and generation capabilities, provide a new breakthrough for recommendation systems. This study proposes an enhanced recommendation method that combines collaborative filtering and LLMs, aiming to leverage collaborative filtering's advantage in modeling user preferences while enhancing the understanding of textual information about users and items through LLMs to improve recommendation accuracy and diversity. This paper first introduces the fundamental theories of collaborative filtering and LLMs, then designs a recommendation system architecture that integrates both, and validates the system's effectiveness through experiments. The results show that the hybrid model based on collaborative filtering and LLMs significantly improves precision, recall, and user satisfaction, demonstrating its potential in complex recommendation scenarios.
Abstract:As the complexity and dynamism of financial markets continue to grow, traditional financial risk prediction methods increasingly struggle to handle large datasets and intricate behavior patterns. This paper explores the feasibility and effectiveness of using deep learning and big data algorithms for financial risk behavior prediction. First, the application and advantages of deep learning and big data algorithms in the financial field are analyzed. Then, a deep learning-based big data risk prediction framework is designed and experimentally validated on actual financial datasets. The experimental results show that this method significantly improves the accuracy of financial risk behavior prediction and provides valuable support for risk management in financial institutions. Challenges in the application of deep learning are also discussed, along with potential directions for future research.