Abstract:With the advent of the information explosion era, the importance of recommendation systems in various applications is increasingly significant. Traditional collaborative filtering algorithms are widely used due to their effectiveness in capturing user behavior patterns, but they encounter limitations when dealing with cold start problems and data sparsity. Large Language Models (LLMs), with their strong natural language understanding and generation capabilities, provide a new breakthrough for recommendation systems. This study proposes an enhanced recommendation method that combines collaborative filtering and LLMs, aiming to leverage collaborative filtering's advantage in modeling user preferences while enhancing the understanding of textual information about users and items through LLMs to improve recommendation accuracy and diversity. This paper first introduces the fundamental theories of collaborative filtering and LLMs, then designs a recommendation system architecture that integrates both, and validates the system's effectiveness through experiments. The results show that the hybrid model based on collaborative filtering and LLMs significantly improves precision, recall, and user satisfaction, demonstrating its potential in complex recommendation scenarios.
Abstract:With the rapid development of large language models (LLMs) and the growing demand for personalized content, recommendation systems have become critical in enhancing user experience and driving engagement. Collaborative filtering algorithms, being core to many recommendation systems, have garnered significant attention for their efficiency and interpretability. However, traditional collaborative filtering approaches face numerous challenges when integrated into large-scale LLM-based systems, including high computational costs, severe data sparsity, cold start problems, and lack of scalability. This paper investigates the optimization and scalability of collaborative filtering algorithms in large language models, addressing these limitations through advanced optimization strategies. Firstly, we analyze the fundamental principles of collaborative filtering algorithms and their limitations when applied in LLM-based contexts. Next, several optimization techniques such as matrix factorization, approximate nearest neighbor search, and parallel computing are proposed to enhance computational efficiency and model accuracy. Additionally, strategies such as distributed architecture and model compression are explored to facilitate dynamic updates and scalability in data-intensive environments.
Abstract:Mixture-of-Expert (MoE) based large language models (LLMs), such as the recent Mixtral and DeepSeek-MoE, have shown great promise in scaling model size without suffering from the quadratic growth of training cost of dense transformers. Like dense models, training MoEs requires answering the same question: given a training budget, what is the optimal allocation on the model size and number of tokens? We study the scaling law of MoE-based LLMs regarding the relations between the model performance, model size, dataset size, and the expert degree. Echoing previous research studying MoE in different contexts, we observe the diminishing return of increasing the number of experts, but this seems to suggest we should scale the number of experts until saturation, as the training cost would remain constant, which is problematic during inference time. We propose to amend the scaling law of MoE by introducing inference efficiency as another metric besides the validation loss. We find that MoEs with a few (4/8) experts are the most serving efficient solution under the same performance, but costs 2.5-3.5x more in training. On the other hand, training a (16/32) expert MoE much smaller (70-85%) than the loss-optimal solution, but with a larger training dataset is a promising setup under a training budget.
Abstract:Robotic perception requires the modeling of both 3D geometry and semantics. Existing methods typically focus on estimating 3D bounding boxes, neglecting finer geometric details and struggling to handle general, out-of-vocabulary objects. To overcome these limitations, we introduce a novel task for 3D occupancy prediction, which aims to estimate the detailed occupancy and semantics of objects from multi-view images. To facilitate this task, we develop a label generation pipeline that produces dense, visibility-aware labels for a given scene. This pipeline includes point cloud aggregation, point labeling, and occlusion handling. We construct two benchmarks based on the Waymo Open Dataset and the nuScenes Dataset, resulting in the Occ3D-Waymo and Occ3D-nuScenes benchmarks. Lastly, we propose a model, dubbed Coarse-to-Fine Occupancy (CTF-Occ) network, which demonstrates superior performance in the 3D occupancy prediction task. This approach addresses the need for finer geometric understanding in a coarse-to-fine fashion. The code, data, and benchmarks are released at https://tsinghua-mars-lab.github.io/Occ3D/.