Abstract:The classical g-g diagram, representing the achievable acceleration space for a vehicle, is commonly used as a constraint in trajectory planning and control due to its computational simplicity. To address non-planar road geometries, this concept can be extended to incorporate g-g constraints as a function of vehicle speed and vertical acceleration, commonly referred to as g-g-g-v diagrams. However, the estimation of g-g-g-v diagrams is an open problem. Existing simulation-based approaches struggle to isolate non-transient, open-loop stable states across all combinations of speed and acceleration, while optimization-based methods often require simplified vehicle equations and have potential convergence issues. In this paper, we present a novel, open-source, quasi-steady-state black box simulation approach that applies a virtual inertial force in the longitudinal direction. The method emulates the load conditions associated with a specified longitudinal acceleration while maintaining constant vehicle speed, enabling open-loop steering ramps in a purely QSS manner. Appropriate regulation of the ramp steer rate inherently mitigates transient vehicle dynamics when determining the maximum feasible lateral acceleration. Moreover, treating the vehicle model as a black box eliminates model mismatch issues, allowing the use of high-fidelity or proprietary vehicle dynamics models typically unsuited for optimization approaches. An open-source version of the proposed method is available at: https://github.com/TUM-AVS/GGGVDiagrams
Abstract:Online planning and execution of minimum-time maneuvers on three-dimensional (3D) circuits is an open challenge in autonomous vehicle racing. In this paper, we present an artificial race driver (ARD) to learn the vehicle dynamics, plan and execute minimum-time maneuvers on a 3D track. ARD integrates a novel kineto-dynamical (KD) vehicle model for trajectory planning with economic nonlinear model predictive control (E-NMPC). We use a high-fidelity vehicle simulator (VS) to compare the closed-loop ARD results with a minimum-lap-time optimal control problem (MLT-VS), solved offline with the same VS. Our ARD sets lap times close to the MLT-VS, and the new KD model outperforms a literature benchmark. Finally, we study the vehicle trajectories, to assess the re-planning capabilities of ARD under execution errors. A video with the main results is available as supplementary material.
Abstract:Large Language Models (LLMs) can capture nuanced contextual relationships, reasoning, and complex problem-solving. By leveraging their ability to process and interpret large-scale information, LLMs have shown potential to address domain-specific challenges, including those in autonomous driving systems. This paper proposes a novel framework that leverages LLMs for risk-aware analysis of generated driving scenarios. We hypothesize that LLMs can effectively evaluate whether driving scenarios generated by autonomous driving testing simulators are safety-critical. To validate this hypothesis, we conducted an empirical evaluation to assess the effectiveness of LLMs in performing this task. This framework will also provide feedback to generate the new safety-critical scenario by using adversarial method to modify existing non-critical scenarios and test their effectiveness in validating motion planning algorithms. Code and scenarios are available at: https://github.com/yuangao-tum/Riskaware-Scenario-analyse