Abstract:We examine the complexity of the standard High-Order Control Barrier Function (HOCBF) approach and propose a truncated Taylor-based approach that reduces design parameters. First, we derive the explicit inequality condition for the HOCBF approach and show that the corresponding equality condition sets a lower bound on the barrier function value that regulates its decay rate. Next, we present our Truncated Taylor CBF (TTCBF), which uses a truncated Taylor series to approximate the discrete-time CBF condition. While the standard HOCBF approach requires multiple class K functions, leading to more design parameters as the constraint's relative degree increases, our TTCBF approach requires only one. We support our theoretical findings in numerical collision-avoidance experiments and show that our approach ensures safety while reducing design complexity.
Abstract:This article proposes a roadmap to address the current challenges in small-scale testbeds for Connected and Automated Vehicles (CAVs) and robot swarms. The roadmap is a joint effort of participants in the workshop "1st Workshop on Small-Scale Testbeds for Connected and Automated Vehicles and Robot Swarms," held on June 2 at the IEEE Intelligent Vehicles Symposium (IV) 2024 in Jeju, South Korea. The roadmap contains three parts: 1) enhancing accessibility and diversity, especially for underrepresented communities, 2) sharing best practices for the development and maintenance of testbeds, and 3) connecting testbeds through an abstraction layer to support collaboration. The workshop features eight invited speakers, four contributed papers [1]-[4], and a presentation of a survey paper on testbeds [5]. The survey paper provides an online comparative table of more than 25 testbeds, available at https://bassamlab.github.io/testbeds-survey. The workshop's own website is available at https://cpm-remote.lrt.unibwmuenchen.de/iv24-workshop.
Abstract:Distributing computations among agents in large networks reduces computational effort in multi-agent path finding (MAPF). One distribution strategy is prioritized planning (PP). In PP, we couple and prioritize interacting agents to achieve a desired behavior across all agents in the network. We characterize the interaction with a directed acyclic graph (DAG). The computation time for solving MAPF problem using PP is mainly determined through the longest path in this DAG. The longest path depends on the fixed undirected coupling graph and the variable prioritization. The approaches from literature to prioritize agents are numerous and pursue various goals. This article presents an approach for prioritization in PP to reduce the longest path length in the coupling DAG and thus the computation time for MAPF using PP. We prove that this problem can be mapped to a graph-coloring problem, in which the number of colors required corresponds to the longest path length in the coupling DAG. We propose a decentralized graph-coloring algorithm to determine priorities for the agents. We evaluate the approach by applying it to multi-agent motion planning (MAMP) for connected and automated vehicles (CAVs) on roads using, a variant of MAPF.
Abstract:Multi-agent path finding (MAPF) in large networks is computationally challenging. An approach for MAPF is prioritized planning (PP), in which agents plan sequentially according to their priority. Albeit a computationally efficient approach for MAPF, the solution quality strongly depends on the prioritization. Most prioritizations rely either on heuristics, which do not generalize well, or iterate to find adequate priorities, which costs computational effort. In this work, we show how agents can compute with multiple prioritizations simultaneously. Our approach is general as it does not rely on domain-specific knowledge. The context of this work is multi-agent motion planning (MAMP) with a receding horizon subject to computation time constraints. MAMP considers the system dynamics in more detail compared to MAPF. In numerical experiments on MAMP, we demonstrate that our approach to prioritization comes close to optimal prioritization and outperforms state-of-the-art methods with only a minor increase in computation time. We show real-time capability in an experiment on a road network with ten vehicles in our Cyber-Physical Mobility Lab.
Abstract:This paper offers a tutorial on current middlewares in automated vehicles. Our aim is to provide the reader with an overview of current middlewares and to identify open challenges in this field. We start by explaining the fundamentals of software architecture in distributed systems and the distinguishing requirements of Automated Vehicles. We then distinguish between communication middlewares and architecture platforms and highlight their key principles and differences. Next, we present five state-of-the-art middlewares as well as their capabilities and functions. We explore how these middlewares could be applied in the design of future vehicle software and their role in the automotive domain. Finally, we compare the five middlewares presented and discuss open research challenges.
Abstract:We propose a learning-based Control Barrier Function (CBF) to reduce conservatism in collision avoidance of car-like robots. Traditional CBFs often use Euclidean distance between robots' centers as safety margin, neglecting headings and simplifying geometries to circles. While this ensures smooth, differentiable safety functions required by CBFs, it can be overly conservative in tight environments. To address this limitation, we design a heading-aware safety margin that accounts for the robots' orientations, enabling a less conservative and more accurate estimation of safe regions. Since the function computing this safety margin is non-differentiable, we approximate it with a neural network to ensure differentiability and facilitate integration with CBFs. We describe how we achieve bounded learning error and incorporate the upper bound into the CBF to provide formal safety guarantees through forward invariance. We show that our CBF is a high-order CBF with relative degree two for a system with two robots whose dynamics are modeled by the nonlinear kinematic bicycle model. Experimental results in overtaking and bypassing scenarios reveal a 33.5 % reduction in conservatism compared to traditional methods, while maintaining safety. Code: https://github.com/bassamlab/sigmarl
Abstract:Non-stationarity poses a fundamental challenge in Multi-Agent Reinforcement Learning (MARL), arising from agents simultaneously learning and altering their policies. This creates a non-stationary environment from the perspective of each individual agent, often leading to suboptimal or even unconverged learning outcomes. We propose an open-source framework named XP-MARL, which augments MARL with auxiliary prioritization to address this challenge in cooperative settings. XP-MARL is 1) founded upon our hypothesis that prioritizing agents and letting higher-priority agents establish their actions first would stabilize the learning process and thus mitigate non-stationarity and 2) enabled by our proposed mechanism called action propagation, where higher-priority agents act first and communicate their actions, providing a more stationary environment for others. Moreover, instead of using a predefined or heuristic priority assignment, XP-MARL learns priority-assignment policies with an auxiliary MARL problem, leading to a joint learning scheme. Experiments in a motion-planning scenario involving Connected and Automated Vehicles (CAVs) demonstrate that XP-MARL improves the safety of a baseline model by 84.4% and outperforms a state-of-the-art approach, which improves the baseline by only 12.8%. Code: github.com/cas-lab-munich/sigmarl
Abstract:Distributed control algorithms are known to reduce overall computation time compared to centralized control algorithms. However, they can result in inconsistent solutions leading to the violation of safety-critical constraints. Inconsistent solutions can arise when two or more agents compute concurrently while making predictions on each others control actions. To address this issue, we propose an iterative algorithm called Synchronization-Based Cooperative Distributed Model Predictive Control, which we presented in [1]. The algorithm consists of two steps: 1. computing the optimal control inputs for each agent and 2. synchronizing the predicted states across all agents. We demonstrate the efficacy of our algorithm in the control of multiple small-scale vehicles in our Cyber-Physical Mobility Lab.
Abstract:In prioritized planning for vehicles, vehicles plan trajectories in parallel or in sequence. Parallel prioritized planning offers approximately consistent computation time regardless of the number of vehicles but struggles to guarantee collision-free trajectories. Conversely, sequential prioritized planning can guarantee collision-freeness but results in increased computation time as the number of sequentially computing vehicles, which we term computation levels, grows. This number is determined by the directed coupling graph resulted from the coupling and prioritization of vehicles. In this work, we guarantee safe trajectories in parallel planning through reachability analysis. Although these trajectories are collision-free, they tend to be conservative. We address this by planning with a subset of vehicles in sequence. We formulate the problem of selecting this subset as a graph partitioning problem that allows us to independently set computation levels. Our simulations demonstrate a reduction in computation levels by approximately 64% compared to sequential prioritized planning while maintaining the solution quality.
Abstract:Connected and automated vehicles and robot swarms hold transformative potential for enhancing safety, efficiency, and sustainability in the transportation and manufacturing sectors. Extensive testing and validation of these technologies is crucial for their deployment in the real world. While simulations are essential for initial testing, they often have limitations in capturing the complex dynamics of real-world interactions. This limitation underscores the importance of small-scale testbeds. These testbeds provide a realistic, cost-effective, and controlled environment for testing and validating algorithms, acting as an essential intermediary between simulation and full-scale experiments. This work serves to facilitate researchers' efforts in identifying existing small-scale testbeds suitable for their experiments and provide insights for those who want to build their own. In addition, it delivers a comprehensive survey of the current landscape of these testbeds. We derive 62 characteristics of testbeds based on the well-known sense-plan-act paradigm and offer an online table comparing 22 small-scale testbeds based on these characteristics. The online table is hosted on our designated public webpage www.cpm-remote.de/testbeds, and we invite testbed creators and developers to contribute to it. We closely examine nine testbeds in this paper, demonstrating how the derived characteristics can be used to present testbeds. Furthermore, we discuss three ongoing challenges concerning small-scale testbeds that we identified, i.e., small-scale to full-scale transition, sustainability, and power and resource management.