Abstract:Multimodal summarization integrating information from diverse data modalities presents a promising solution to aid the understanding of information within various processes. However, the application and advantages of multimodal summarization have not received much attention in model-based engineering (MBE), where it has become a cornerstone in the design and development of complex systems, leveraging formal models to improve understanding, validation and automation throughout the engineering lifecycle. UML and EMF diagrams in model-based engineering contain a large amount of multimodal information and intricate relational data. Hence, our study explores the application of multimodal large language models within the domain of model-based engineering to evaluate their capacity for understanding and identifying relationships, features, and functionalities embedded in UML and EMF diagrams. We aim to demonstrate the transformative potential benefits and limitations of multimodal summarization in improving productivity and accuracy in MBE practices. The proposed approach is evaluated within the context of automotive software development, while many promising state-of-art models were taken into account.
Abstract:Vision-Language Models (VLMs) are expected to be capable of reasoning with commonsense knowledge as human beings. One example is that humans can reason where and when an image is taken based on their knowledge. This makes us wonder if, based on visual cues, Vision-Language Models that are pre-trained with large-scale image-text resources can achieve and even outperform human's capability in reasoning times and location. To address this question, we propose a two-stage \recognition\space and \reasoning\space probing task, applied to discriminative and generative VLMs to uncover whether VLMs can recognize times and location-relevant features and further reason about it. To facilitate the investigation, we introduce WikiTiLo, a well-curated image dataset compromising images with rich socio-cultural cues. In the extensive experimental studies, we find that although VLMs can effectively retain relevant features in visual encoders, they still fail to make perfect reasoning. We will release our dataset and codes to facilitate future studies.