Abstract:Agents in real-world scenarios like automated driving deal with uncertainty in their environment, in particular due to perceptual uncertainty. Although, reinforcement learning is dedicated to autonomous decision-making under uncertainty these algorithms are typically not informed about the uncertainty currently contained in their environment. On the other hand, uncertainty estimation for perception itself is typically directly evaluated in the perception domain, e.g., in terms of false positive detection rates or calibration errors based on camera images. Its use for deciding on goal-oriented actions remains largely unstudied. In this paper, we investigate how an agent's behavior is influenced by an uncertain perception and how this behavior changes if information about this uncertainty is available. Therefore, we consider a proxy task, where the agent is rewarded for driving a route as fast as possible without colliding with other road users. For controlled experiments, we introduce uncertainty in the observation space by perturbing the perception of the given agent while informing the latter. Our experiments show that an unreliable observation space modeled by a perturbed perception leads to a defensive driving behavior of the agent. Furthermore, when adding the information about the current uncertainty directly to the observation space, the agent adapts to the specific situation and in general accomplishes its task faster while, at the same time, accounting for risks.
Abstract:In recent years, a body of works has emerged, studying shape and texture biases of off-the-shelf pre-trained deep neural networks (DNN) for image classification. These works study how much a trained DNN relies on image cues, predominantly shape and texture. In this work, we switch the perspective, posing the following questions: What can a DNN learn from each of the image cues, i.e., shape, texture and color, respectively? How much does each cue influence the learning success? And what are the synergy effects between different cues? Studying these questions sheds light upon cue influences on learning and thus the learning capabilities of DNNs. We study these questions on semantic segmentation which allows us to address our questions on pixel level. To conduct this study, we develop a generic procedure to decompose a given dataset into multiple ones, each of them only containing either a single cue or a chosen mixture. This framework is then applied to two real-world datasets, Cityscapes and PASCAL Context, and a synthetic data set based on the CARLA simulator. We learn the given semantic segmentation task from these cue datasets, creating cue experts. Early fusion of cues is performed by constructing appropriate datasets. This is complemented by a late fusion of experts which allows us to study cue influence location-dependent on pixel level. Our study on three datasets reveals that neither texture nor shape clearly dominate the learning success, however a combination of shape and color but without texture achieves surprisingly strong results. Our findings hold for convolutional and transformer backbones. In particular, qualitatively there is almost no difference in how both of the architecture types extract information from the different cues.
Abstract:Domain adaptation is of huge interest as labeling is an expensive and error-prone task, especially when labels are needed on pixel-level like in semantic segmentation. Therefore, one would like to be able to train neural networks on synthetic domains, where data is abundant and labels are precise. However, these models often perform poorly on out-of-domain images. To mitigate the shift in the input, image-to-image approaches can be used. Nevertheless, standard image-to-image approaches that bridge the domain of deployment with the synthetic training domain do not focus on the downstream task but only on the visual inspection level. We therefore propose a "task aware" version of a GAN in an image-to-image domain adaptation approach. With the help of a small amount of labeled ground truth data, we guide the image-to-image translation to a more suitable input image for a semantic segmentation network trained on synthetic data (synthetic-domain expert). The main contributions of this work are 1) a modular semi-supervised domain adaptation method for semantic segmentation by training a downstream task aware CycleGAN while refraining from adapting the synthetic semantic segmentation expert 2) the demonstration that the method is applicable to complex domain adaptation tasks and 3) a less biased domain gap analysis by using from scratch networks. We evaluate our method on a classification task as well as on semantic segmentation. Our experiments demonstrate that our method outperforms CycleGAN - a standard image-to-image approach - by 7 percent points in accuracy in a classification task using only 70 (10%) ground truth images. For semantic segmentation we can show an improvement of about 4 to 7 percent points in mean Intersection over union on the Cityscapes evaluation dataset with only 14 ground truth images during training.