Abstract:This paper introduces a novel hybrid architecture that enhances radar-based Dynamic Occupancy Grid Mapping (DOGM) for autonomous vehicles, integrating deep learning for state-classification. Traditional radar-based DOGM often faces challenges in accurately distinguishing between static and dynamic objects. Our approach addresses this limitation by introducing a neural network-based DOGM state correction mechanism, designed as a semantic segmentation task, to refine the accuracy of the occupancy grid. Additionally a heuristic fusion approach is proposed which allows to enhance performance without compromising on safety. We extensively evaluate this hybrid architecture on the NuScenes Dataset, focusing on its ability to improve dynamic object detection as well grid quality. The results show clear improvements in the detection capabilities of dynamic objects, highlighting the effectiveness of the deep learning-enhanced state correction in radar-based DOGM.
Abstract:Dynamic Occupancy Grid Mapping is a technique used to generate a local map of the environment containing both static and dynamic information. Typically, these maps are primarily generated using lidar measurements. However, with improvements in radar sensing, resulting in better accuracy and higher resolution, radar is emerging as a viable alternative to lidar as the primary sensor for mapping. In this paper, we propose a radar-centric dynamic occupancy grid mapping algorithm with adaptations to the state computation, inverse sensor model, and field-of-view computation tailored to the specifics of radar measurements. We extensively evaluate our approach using real data to demonstrate its effectiveness and establish the first benchmark for radar-based dynamic occupancy grid mapping using the publicly available Radarscenes dataset.
Abstract:Currently decision making is one of the biggest challenges in autonomous driving. This paper introduces a method for safely navigating an autonomous vehicle in highway scenarios by combining deep Q-Networks and insight from control theory. A Deep Q-Network is trained in simulation to serve as a central decision-making unit by proposing targets for a trajectory planner. The generated trajectories in combination with a controller for longitudinal movement are used to execute lane change maneuvers. In order to prove the functionality of this approach it is evaluated on two different highway traffic scenarios. Furthermore, the impact of different state representations on the performance and training process is analyzed. The results show that the proposed system can produce efficient and safe driving behavior.
Abstract:Through constant improvements in recent years radar sensors have become a viable alternative to lidar as the main distancing sensor of an autonomous vehicle. Although robust and with the possibility to directly measure the radial velocity, it brings it's own set of challenges, for which existing algorithms need to be adapted. One core algorithm of a perception system is dynamic occupancy grid mapping, which has traditionally relied on lidar. In this paper we present a dual-weight particle filter as an extension for a Bayesian occupancy grid mapping framework to allow to operate it with radar as its main sensors. It uses two separate particle weights that are computed differently to compensate that a radial velocity measurement in many situations is not able to capture the actual velocity of an object. We evaluate the method extensively with simulated data and show the advantages over existing single weight solutions.