Abstract:Large language models (LLMs) have demonstrated remarkable capabilities; however, the optimization of their prompts has historically prioritized performance metrics at the expense of crucial safety and security considerations. To overcome this shortcoming, we introduce "Survival of the Safest" (SoS), an innovative multi-objective prompt optimization framework that enhances both performance and security in LLMs simultaneously. SoS utilizes an interleaved multi-objective evolution strategy, integrating semantic, feedback, and crossover mutations to effectively traverse the prompt landscape. Differing from the computationally demanding Pareto front methods, SoS provides a scalable solution that expedites optimization in complex, high-dimensional discrete search spaces while keeping computational demands low. Our approach accommodates flexible weighting of objectives and generates a pool of optimized candidates, empowering users to select prompts that optimally meet their specific performance and security needs. Experimental evaluations across diverse benchmark datasets affirm SoS's efficacy in delivering high performance and notably enhancing safety and security compared to single-objective methods. This advancement marks a significant stride towards the deployment of LLM systems that are both high-performing and secure across varied industrial applications
Abstract:Large language models (LLMs) are proficient in capturing factual knowledge across various domains. However, refining their capabilities on previously seen knowledge or integrating new knowledge from external sources remains a significant challenge. In this work, we propose a novel synthetic knowledge ingestion method called Ski, which leverages fine-grained synthesis, interleaved generation, and assemble augmentation strategies to construct high-quality data representations from raw knowledge sources. We then integrate Ski and its variations with three knowledge injection techniques: Retrieval Augmented Generation (RAG), Supervised Fine-tuning (SFT), and Continual Pre-training (CPT) to inject and refine knowledge in language models. Extensive empirical experiments are conducted on various question-answering tasks spanning finance, biomedicine, and open-generation domains to demonstrate that Ski significantly outperforms baseline methods by facilitating effective knowledge injection. We believe that our work is an important step towards enhancing the factual accuracy of LLM outputs by refining knowledge representation and injection capabilities.
Abstract:Language models (LMs) are known to suffer from hallucinations and misinformation. Retrieval augmented generation (RAG) that retrieves verifiable information from an external knowledge corpus to complement the parametric knowledge in LMs provides a tangible solution to these problems. However, the generation quality of RAG is highly dependent on the relevance between a user's query and the retrieved documents. Inaccurate responses may be generated when the query is outside of the scope of knowledge represented in the external knowledge corpus or if the information in the corpus is out-of-date. In this work, we establish a statistical framework that assesses how well a query can be answered by an RAG system by capturing the relevance of knowledge. We introduce an online testing procedure that employs goodness-of-fit (GoF) tests to inspect the relevance of each user query to detect out-of-knowledge queries with low knowledge relevance. Additionally, we develop an offline testing framework that examines a collection of user queries, aiming to detect significant shifts in the query distribution which indicates the knowledge corpus is no longer sufficiently capable of supporting the interests of the users. We demonstrate the capabilities of these strategies through a systematic evaluation on eight question-answering (QA) datasets, the results of which indicate that the new testing framework is an efficient solution to enhance the reliability of existing RAG systems.
Abstract:In recent years, large language models (LLMs) have become increasingly prevalent, offering remarkable text generation capabilities. However, a pressing challenge is their tendency to make confidently wrong predictions, highlighting the critical need for uncertainty quantification (UQ) in LLMs. While previous works have mainly focused on addressing aleatoric uncertainty, the full spectrum of uncertainties, including epistemic, remains inadequately explored. Motivated by this gap, we introduce a novel UQ method, sampling with perturbation for UQ (SPUQ), designed to tackle both aleatoric and epistemic uncertainties. The method entails generating a set of perturbations for LLM inputs, sampling outputs for each perturbation, and incorporating an aggregation module that generalizes the sampling uncertainty approach for text generation tasks. Through extensive experiments on various datasets, we investigated different perturbation and aggregation techniques. Our findings show a substantial improvement in model uncertainty calibration, with a reduction in Expected Calibration Error (ECE) by 50\% on average. Our findings suggest that our proposed UQ method offers promising steps toward enhancing the reliability and trustworthiness of LLMs.
Abstract:Uncertainty estimation is a crucial aspect of deploying dependable deep learning models in safety-critical systems. In this study, we introduce a novel and efficient method for deterministic uncertainty estimation called Discriminant Distance-Awareness Representation (DDAR). Our approach involves constructing a DNN model that incorporates a set of prototypes in its latent representations, enabling us to analyze valuable feature information from the input data. By leveraging a distinction maximization layer over optimal trainable prototypes, DDAR can learn a discriminant distance-awareness representation. We demonstrate that DDAR overcomes feature collapse by relaxing the Lipschitz constraint that hinders the practicality of deterministic uncertainty methods (DUMs) architectures. Our experiments show that DDAR is a flexible and architecture-agnostic method that can be easily integrated as a pluggable layer with distance-sensitive metrics, outperforming state-of-the-art uncertainty estimation methods on multiple benchmark problems.
Abstract:Crafting an ideal prompt for Large Language Models (LLMs) is a challenging task that demands significant resources and expert human input. Existing work treats the optimization of prompt instruction and in-context learning examples as distinct problems, leading to sub-optimal prompt performance. This research addresses this limitation by establishing a unified in-context prompt optimization framework, which aims to achieve joint optimization of the prompt instruction and examples. However, formulating such optimization in the discrete and high-dimensional natural language space introduces challenges in terms of convergence and computational efficiency. To overcome these issues, we present PhaseEvo, an efficient automatic prompt optimization framework that combines the generative capability of LLMs with the global search proficiency of evolution algorithms. Our framework features a multi-phase design incorporating innovative LLM-based mutation operators to enhance search efficiency and accelerate convergence. We conduct an extensive evaluation of our approach across 35 benchmark tasks. The results demonstrate that PhaseEvo significantly outperforms the state-of-the-art baseline methods by a large margin whilst maintaining good efficiency.
Abstract:Large language models (LLMs) are becoming increasingly important for machine learning applications. However, it can be challenging to align LLMs with our intent, particularly when we want to generate content that is preferable over others or when we want the LLM to respond in a certain style or tone that is hard to describe. To address this challenge, we propose an approach that uses contrastive examples to better describe our intent. This involves providing positive examples that illustrate the true intent, along with negative examples that show what characteristics we want LLMs to avoid. The negative examples can be retrieved from labeled data, written by a human, or generated by the LLM itself. Before generating an answer, we ask the model to analyze the examples to teach itself what to avoid. This reasoning step provides the model with the appropriate articulation of the user's need and guides it towards generting a better answer. We tested our approach on both synthesized and real-world datasets, including StackExchange and Reddit, and found that it significantly improves performance compared to standard few-shot prompting
Abstract:Evaluating the quality and variability of text generated by Large Language Models (LLMs) poses a significant, yet unresolved research challenge. Traditional evaluation methods, such as ROUGE and BERTScore, which measure token similarity, often fail to capture the holistic semantic equivalence. This results in a low correlation with human judgments and intuition, which is especially problematic in high-stakes applications like healthcare and finance where reliability, safety, and robust decision-making are highly critical. This work proposes DCR, an automated framework for evaluating and improving the consistency of LLM-generated texts using a divide-conquer-reasoning approach. Unlike existing LLM-based evaluators that operate at the paragraph level, our method employs a divide-and-conquer evaluator (DCE) that breaks down the paragraph-to-paragraph comparison between two generated responses into individual sentence-to-paragraph comparisons, each evaluated based on predefined criteria. To facilitate this approach, we introduce an automatic metric converter (AMC) that translates the output from DCE into an interpretable numeric score. Beyond the consistency evaluation, we further present a reason-assisted improver (RAI) that leverages the analytical reasons with explanations identified by DCE to generate new responses aimed at reducing these inconsistencies. Through comprehensive and systematic empirical analysis, we show that our approach outperforms state-of-the-art methods by a large margin (e.g., +19.3% and +24.3% on the SummEval dataset) in evaluating the consistency of LLM generation across multiple benchmarks in semantic, factual, and summarization consistency tasks. Our approach also substantially reduces nearly 90% of output inconsistencies, showing promise for effective hallucination mitigation.
Abstract:The performance of optical character recognition (OCR) heavily relies on document image quality, which is crucial for automatic document processing and document intelligence. However, most existing document enhancement methods require supervised data pairs, which raises concerns about data separation and privacy protection, and makes it challenging to adapt these methods to new domain pairs. To address these issues, we propose DECDM, an end-to-end document-level image translation method inspired by recent advances in diffusion models. Our method overcomes the limitations of paired training by independently training the source (noisy input) and target (clean output) models, making it possible to apply domain-specific diffusion models to other pairs. DECDM trains on one dataset at a time, eliminating the need to scan both datasets concurrently, and effectively preserving data privacy from the source or target domain. We also introduce simple data augmentation strategies to improve character-glyph conservation during translation. We compare DECDM with state-of-the-art methods on multiple synthetic data and benchmark datasets, such as document denoising and {\color{black}shadow} removal, and demonstrate the superiority of performance quantitatively and qualitatively.
Abstract:Hallucination detection is a critical step toward understanding the trustworthiness of modern language models (LMs). To achieve this goal, we re-examine existing detection approaches based on the self-consistency of LMs and uncover two types of hallucinations resulting from 1) question-level and 2) model-level, which cannot be effectively identified through self-consistency check alone. Building upon this discovery, we propose a novel sampling-based method, i.e., semantic-aware cross-check consistency (SAC$^3$) that expands on the principle of self-consistency checking. Our SAC$^3$ approach incorporates additional mechanisms to detect both question-level and model-level hallucinations by leveraging advances including semantically equivalent question perturbation and cross-model response consistency checking. Through extensive and systematic empirical analysis, we demonstrate that SAC$^3$ outperforms the state of the art in detecting both non-factual and factual statements across multiple question-answering and open-domain generation benchmarks.