Abstract:Autoregressive models have achieved promising results in natural language processing. However, for image generation tasks, they encounter substantial challenges in effectively capturing long-range dependencies, managing computational costs, and most crucially, defining meaningful autoregressive sequences that reflect natural image hierarchies. To address these issues, we present \textbf{N}ext-\textbf{F}requency \textbf{I}mage \textbf{G}eneration (\textbf{NFIG}), a novel framework that decomposes the image generation process into multiple frequency-guided stages. Our approach first generates low-frequency components to establish global structure with fewer tokens, then progressively adds higher-frequency details, following the natural spectral hierarchy of images. This principled autoregressive sequence not only improves the quality of generated images by better capturing true causal relationships between image components, but also significantly reduces computational overhead during inference. Extensive experiments demonstrate that NFIG achieves state-of-the-art performance with fewer steps, offering a more efficient solution for image generation, with 1.25$\times$ speedup compared to VAR-d20 while achieving better performance (FID: 2.81) on the ImageNet-256 benchmark. We hope that our insight of incorporating frequency-domain knowledge to guide autoregressive sequence design will shed light on future research. We will make our code publicly available upon acceptance of the paper.
Abstract:Video deblurring is a challenging task that aims to recover sharp sequences from blur and noisy observations. The image-formation model plays a crucial role in traditional model-based methods, constraining the possible solutions. However, this is only the case for some deep learning-based methods. Despite deep-learning models achieving better results, traditional model-based methods remain widely popular due to their flexibility. An increasing number of scholars combine the two to achieve better deblurring performance. This paper proposes introducing knowledge of the image-formation model into a deep learning network by using the pseudo-inverse of the blur. We use a deep network to fit the blurring and estimate pseudo-inverse. Then, we use this estimation, combined with a variational deep-learning network, to deblur the video sequence. Notably, our experimental results demonstrate that such modifications can significantly improve the performance of deep learning models for video deblurring. Furthermore, our experiments on different datasets achieved notable performance improvements, proving that our proposed method can generalize to different scenarios and cameras.