Abstract:In order to meet the demand for higher scene rendering quality from some autonomous driving teams (such as those focused on CV), we have decided to use an offline simulation industrial rendering framework instead of real-time rendering in our autonomous driving simulator. Our plan is to generate lower-quality scenes using a game engine, extract them, and then use an IQA algorithm to validate the improvement in scene quality achieved through offline rendering. The improved scenes will then be used for training.
Abstract:We propose a cross-lingual neural codec language model, VALL-E X, for cross-lingual speech synthesis. Specifically, we extend VALL-E and train a multi-lingual conditional codec language model to predict the acoustic token sequences of the target language speech by using both the source language speech and the target language text as prompts. VALL-E X inherits strong in-context learning capabilities and can be applied for zero-shot cross-lingual text-to-speech synthesis and zero-shot speech-to-speech translation tasks. Experimental results show that it can generate high-quality speech in the target language via just one speech utterance in the source language as a prompt while preserving the unseen speaker's voice, emotion, and acoustic environment. Moreover, VALL-E X effectively alleviates the foreign accent problems, which can be controlled by a language ID. Audio samples are available at \url{https://aka.ms/vallex}.
Abstract:We introduce a language modeling approach for text to speech synthesis (TTS). Specifically, we train a neural codec language model (called Vall-E) using discrete codes derived from an off-the-shelf neural audio codec model, and regard TTS as a conditional language modeling task rather than continuous signal regression as in previous work. During the pre-training stage, we scale up the TTS training data to 60K hours of English speech which is hundreds of times larger than existing systems. Vall-E emerges in-context learning capabilities and can be used to synthesize high-quality personalized speech with only a 3-second enrolled recording of an unseen speaker as an acoustic prompt. Experiment results show that Vall-E significantly outperforms the state-of-the-art zero-shot TTS system in terms of speech naturalness and speaker similarity. In addition, we find Vall-E could preserve the speaker's emotion and acoustic environment of the acoustic prompt in synthesis. See https://aka.ms/valle for demos of our work.
Abstract:The massive growth of self-supervised learning (SSL) has been witnessed in language, vision, speech, and audio domains over the past few years. While discrete label prediction is widely adopted for other modalities, the state-of-the-art audio SSL models still employ reconstruction loss for pre-training. Compared with reconstruction loss, semantic-rich discrete label prediction encourages the SSL model to abstract the high-level audio semantics and discard the redundant details as in human perception. However, a semantic-rich acoustic tokenizer for general audio pre-training is usually not straightforward to obtain, due to the continuous property of audio and unavailable phoneme sequences like speech. To tackle this challenge, we propose BEATs, an iterative audio pre-training framework to learn Bidirectional Encoder representation from Audio Transformers, where an acoustic tokenizer and an audio SSL model are optimized by iterations. In the first iteration, we use random projection as the acoustic tokenizer to train an audio SSL model in a mask and label prediction manner. Then, we train an acoustic tokenizer for the next iteration by distilling the semantic knowledge from the pre-trained or fine-tuned audio SSL model. The iteration is repeated with the hope of mutual promotion of the acoustic tokenizer and audio SSL model. The experimental results demonstrate our acoustic tokenizers can generate discrete labels with rich audio semantics and our audio SSL models achieve state-of-the-art results across various audio classification benchmarks, even outperforming previous models that use more training data and model parameters significantly. Specifically, we set a new state-of-the-art mAP 50.6% on AudioSet-2M for audio-only models without using any external data, and 98.1% accuracy on ESC-50. The code and pre-trained models are available at https://aka.ms/beats.
Abstract:Recently, masked prediction pre-training has seen remarkable progress in self-supervised learning (SSL) for speech recognition. It usually requires a codebook obtained in an unsupervised way, making it less accurate and difficult to interpret. We propose two supervision-guided codebook generation approaches to improve automatic speech recognition (ASR) performance and also the pre-training efficiency, either through decoding with a hybrid ASR system to generate phoneme-level alignments (named PBERT), or performing clustering on the supervised speech features extracted from an end-to-end CTC model (named CTC clustering). Both the hybrid and CTC models are trained on the same small amount of labeled speech as used in fine-tuning. Experiments demonstrate significant superiority of our methods to various SSL and self-training baselines, with up to 17.0% relative WER reduction. Our pre-trained models also show good transferability in a non-ASR speech task.
Abstract:Recently, self-supervised learning (SSL) has demonstrated strong performance in speaker recognition, even if the pre-training objective is designed for speech recognition. In this paper, we study which factor leads to the success of self-supervised learning on speaker-related tasks, e.g. speaker verification (SV), through a series of carefully designed experiments. Our empirical results on the Voxceleb-1 dataset suggest that the benefit of SSL to SV task is from a combination of mask speech prediction loss, data scale, and model size, while the SSL quantizer has a minor impact. We further employ the integrated gradients attribution method and loss landscape visualization to understand the effectiveness of self-supervised learning for speaker recognition performance.
Abstract:Recently, pioneer work finds that speech pre-trained models can solve full-stack speech processing tasks, because the model utilizes bottom layers to learn speaker-related information and top layers to encode content-related information. Since the network capacity is limited, we believe the speech recognition performance could be further improved if the model is dedicated to audio content information learning. To this end, we propose Intermediate Layer Supervision for Self-Supervised Learning (ILS-SSL), which forces the model to concentrate on content information as much as possible by adding an additional SSL loss on the intermediate layers. Experiments on LibriSpeech test-other set show that our method outperforms HuBERT significantly, which achieves a 23.5%/11.6% relative word error rate reduction in the w/o language model setting for base/large models. Detailed analysis shows the bottom layers of our model have a better correlation with phonetic units, which is consistent with our intuition and explains the success of our method for ASR.
Abstract:Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. In this paper, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM is built based on the HuBERT framework, with an emphasis on both spoken content modeling and speaker identity preservation. We first equip the Transformer structure with gated relative position bias to improve its capability on recognition tasks. For better speaker discrimination, we propose an utterance mixing training strategy, where additional overlapped utterances are created unsupervisely and incorporated during model training. Lastly, we scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks. The code and pretrained models are available at https://aka.ms/wavlm.
Abstract:Noise robustness is essential for deploying automatic speech recognition (ASR) systems in real-world environments. One way to reduce the effect of noise interference is to employ a preprocessing module that conducts speech enhancement, and then feed the enhanced speech to an ASR backend. In this work, instead of suppressing background noise with a conventional cascaded pipeline, we employ a noise-robust representation learned by a refined self-supervised framework for noisy speech recognition. We propose to combine a reconstruction module with contrastive learning and perform multi-task continual pre-training on noisy data. The reconstruction module is used for auxiliary learning to improve the noise robustness of the learned representation and thus is not required during inference. Experiments demonstrate the effectiveness of our proposed method. Our model substantially reduces the word error rate (WER) for the synthesized noisy LibriSpeech test sets, and yields around 4.1/7.5% WER reduction on noisy clean/other test sets compared to data augmentation. For the real-world noisy speech from the CHiME-4 challenge (1-channel track), we have obtained the state of the art ASR performance without any denoising front-end. Moreover, we achieve comparable performance to the best supervised approach reported with only 16% of labeled data.
Abstract:The speech representations learned from large-scale unlabeled data have shown better generalizability than those from supervised learning and thus attract a lot of interest to be applied for various downstream tasks. In this paper, we explore the limits of speech representations learned by different self-supervised objectives and datasets for automatic speaker verification (ASV), especially with a well-recognized SOTA ASV model, ECAPA-TDNN [1], as a downstream model. The representations from all hidden layers of the pre-trained model are firstly averaged with learnable weights and then fed into the ECAPA-TDNN as input features. The experimental results on Voxceleb dataset show that the weighted average representation is significantly superior to FBank, a conventional handcrafted feature for ASV. Our best single system achieves 0.564%, 0.561%, and 1.230% equal error rate (EER) on the three official trials of VoxCeleb1, separately. Accordingly, the ensemble system with three pre-trained models can further improve the EER to 0.431%, 0.507% and 1.081%. Among the three evaluation trials, our best system outperforms the winner system [2] of the VoxCeleb Speaker Recognition Challenge 2021 (VoxSRC2021) on the VoxCeleb1-E trial.