Abstract:Large Language Models (LLMs) are prone to hallucination with non-factual or unfaithful statements, which undermines the applications in real-world scenarios. Recent researches focus on uncertainty-based hallucination detection, which utilizes the output probability of LLMs for uncertainty calculation and does not rely on external knowledge or frequent sampling from LLMs. Whereas, most approaches merely consider the uncertainty of each independent token, while the intricate semantic relations among tokens and sentences are not well studied, which limits the detection of hallucination that spans over multiple tokens and sentences in the passage. In this paper, we propose a method to enhance uncertainty modeling with semantic graph for hallucination detection. Specifically, we first construct a semantic graph that well captures the relations among entity tokens and sentences. Then, we incorporate the relations between two entities for uncertainty propagation to enhance sentence-level hallucination detection. Given that hallucination occurs due to the conflict between sentences, we further present a graph-based uncertainty calibration method that integrates the contradiction probability of the sentence with its neighbors in the semantic graph for uncertainty calculation. Extensive experiments on two datasets show the great advantages of our proposed approach. In particular, we obtain substantial improvements with 19.78% in passage-level hallucination detection.
Abstract:Since large language models (LLMs) achieve significant success in recent years, the hallucination issue remains a challenge, numerous benchmarks are proposed to detect the hallucination. Nevertheless, some of these benchmarks are not naturally generated by LLMs but are intentionally induced. Also, many merely focus on the factuality hallucination while ignoring the faithfulness hallucination. Additionally, although dialogue pattern is more widely utilized in the era of LLMs, current benchmarks only concentrate on sentence-level and passage-level hallucination. In this study, we propose DiaHalu, the first dialogue-level hallucination evaluation benchmark to our knowledge. Initially, we integrate the collected topics into system prompts and facilitate a dialogue between two ChatGPT3.5. Subsequently, we manually modify the contents that do not adhere to human language conventions and then have LLMs re-generate, simulating authentic human-machine interaction scenarios. Finally, professional scholars annotate all the samples in the dataset. DiaHalu covers four common multi-turn dialogue domains and five hallucination subtypes, extended from factuality and faithfulness hallucination. Experiments through some well-known LLMs and detection methods on the dataset show that DiaHalu is a challenging benchmark, holding significant value for further research.
Abstract:Information extraction (IE) aims to extract complex structured information from the text. Numerous datasets have been constructed for various IE tasks, leading to time-consuming and labor-intensive data annotations. Nevertheless, most prevailing methods focus on training task-specific models, while the common knowledge among different IE tasks is not explicitly modeled. Moreover, the same phrase may have inconsistent labels in different tasks, which poses a big challenge for knowledge transfer using a unified model. In this study, we propose a regularization-based transfer learning method for IE (TIE) via an instructed graph decoder. Specifically, we first construct an instruction pool for datasets from all well-known IE tasks, and then present an instructed graph decoder, which decodes various complex structures into a graph uniformly based on corresponding instructions. In this way, the common knowledge shared with existing datasets can be learned and transferred to a new dataset with new labels. Furthermore, to alleviate the label inconsistency problem among various IE tasks, we introduce a task-specific regularization strategy, which does not update the gradients of two tasks with 'opposite direction'. We conduct extensive experiments on 12 datasets spanning four IE tasks, and the results demonstrate the great advantages of our proposed method