Abstract:Recent studies have demonstrated that In-Context Learning (ICL), through the use of specific demonstrations, can align Large Language Models (LLMs) with human preferences known as In-Context Alignment (ICA), indicating that models can comprehend human instructions without requiring parameter adjustments. However, the exploration of the mechanism and applicability of ICA remains limited. In this paper, we begin by dividing the context text used in ICA into three categories: format, system prompt, and example. Through ablation experiments, we investigate the effectiveness of each part in enabling ICA to function effectively. We then examine how variants in these parts impact the model's alignment performance. Our findings indicate that the example part is crucial for enhancing the model's alignment capabilities, with changes in examples significantly affecting alignment performance. We also conduct a comprehensive evaluation of ICA's zero-shot capabilities in various alignment tasks. The results indicate that compared to parameter fine-tuning methods, ICA demonstrates superior performance in knowledge-based tasks and tool-use tasks. However, it still exhibits certain limitations in areas such as multi-turn dialogues and instruction following.
Abstract:Text style is highly abstract, as it encompasses various aspects of a speaker's characteristics, habits, logical thinking, and the content they express. However, previous text-style transfer tasks have primarily focused on data-driven approaches, lacking in-depth analysis and research from the perspectives of linguistics and cognitive science. In this paper, we introduce a novel task called Text Speech-Style Transfer (TSST). The main objective is to further explore topics related to human cognition, such as personality and emotion, based on the capabilities of existing LLMs. Considering the objective of our task and the distinctive characteristics of oral speech in real-life scenarios, we trained multi-dimension (i.e. filler words, vividness, interactivity, emotionality) evaluation models for the TSST and validated their correlation with human assessments. We thoroughly analyze the performance of several large language models (LLMs) and identify areas where further improvement is needed. Moreover, driven by our evaluation models, we have released a new corpus that improves the capabilities of LLMs in generating text with speech-style characteristics. In summary, we present the TSST task, a new benchmark for style transfer and emphasizing human-oriented evaluation, exploring and advancing the performance of current LLMs.
Abstract:Large Language Models (LLMs) have demonstrated remarkable performance across various natural language tasks, marking significant strides towards general artificial intelligence. While general artificial intelligence is leveraged by developing increasingly large-scale models, there could be another branch to develop lightweight custom models that better serve certain domains, taking into account the high cost of training and deploying LLMs and the scarcity of resources. In this paper, we present MindLLM, a novel series of bilingual lightweight large language models, trained from scratch, alleviating such burdens by offering models with 1.3 billion and 3 billion parameters. A thorough account of experiences accrued during large model development is given, covering every step of the process, including data construction, model architecture, evaluation, and applications. Such insights are hopefully valuable for fellow academics and developers. MindLLM consistently matches or surpasses the performance of other open-source larger models on some public benchmarks. We also introduce an innovative instruction tuning framework tailored for smaller models to enhance their capabilities efficiently. Moreover, we explore the application of MindLLM in specific vertical domains such as law and finance, underscoring the agility and adaptability of our lightweight models.
Abstract:Recently, learned video compression has achieved exciting performance. Following the traditional hybrid prediction coding framework, most learned methods generally adopt the motion estimation motion compensation (MEMC) method to remove inter-frame redundancy. However, inaccurate motion vector (MV) usually lead to the distortion of reconstructed frame. In addition, most approaches ignore the spatial and channel redundancy. To solve above problems, we propose a motion-aware and spatial-temporal-channel contextual coding based video compression network (MASTC-VC), which learns the latent representation and uses variational autoencoders (VAEs) to capture the characteristics of intra-frame pixels and inter-frame motion. Specifically, we design a multiscale motion-aware module (MS-MAM) to estimate spatial-temporal-channel consistent motion vector by utilizing the multiscale motion prediction information in a coarse-to-fine way. On the top of it, we further propose a spatial-temporal-channel contextual module (STCCM), which explores the correlation of latent representation to reduce the bit consumption from spatial, temporal and channel aspects respectively. Comprehensive experiments show that our proposed MASTC-VC is surprior to previous state-of-the-art (SOTA) methods on three public benchmark datasets. More specifically, our method brings average 10.15\% BD-rate savings against H.265/HEVC (HM-16.20) in PSNR metric and average 23.93\% BD-rate savings against H.266/VVC (VTM-13.2) in MS-SSIM metric.