Abstract:Scribble supervised salient object detection (SSSOD) constructs segmentation ability of attractive objects from surroundings under the supervision of sparse scribble labels. For the better segmentation, depth and thermal infrared modalities serve as the supplement to RGB images in the complex scenes. Existing methods specifically design various feature extraction and multi-modal fusion strategies for RGB, RGB-Depth, RGB-Thermal, and Visual-Depth-Thermal image input respectively, leading to similar model flood. As the recently proposed Segment Anything Model (SAM) possesses extraordinary segmentation and prompt interactive capability, we propose an SSSOD family based on SAM, named SSFam, for the combination input with different modalities. Firstly, different modal-aware modulators are designed to attain modal-specific knowledge which cooperates with modal-agnostic information extracted from the frozen SAM encoder for the better feature ensemble. Secondly, a siamese decoder is tailored to bridge the gap between the training with scribble prompt and the testing with no prompt for the stronger decoding ability. Our model demonstrates the remarkable performance among combinations of different modalities and refreshes the highest level of scribble supervised methods and comes close to the ones of fully supervised methods. https://github.com/liuzywen/SSFam
Abstract:The growing scarcity of spectrum resources, wideband spectrum sensing is required to process a prohibitive volume of data at a high sampling rate. For some applications, spectrum estimation only requires second-order statistics. In this case, a fast power spectrum sensing solution is proposed based on the generalized coprime sampling. By exploring the sensing vector inherent structure, the autocorrelation sequence of inputs can be reconstructed from sub-Nyquist samples by only utilizing the parallel Fourier transform and simple multiplication operations. Thus, it takes less time than the state-of-the-art methods while maintaining the same performance, and it achieves higher performance than the existing methods within the same execution time, without the need for pre-estimating the number of inputs. Furthermore, the influence of the model mismatch has only a minor impact on the estimation performance, which allows for more efficient use of the spectrum resource in a distributed swarm scenario. Simulation results demonstrate the low complexity in sampling and computation, making it a more practical solution for real-time and distributed wideband spectrum sensing applications.
Abstract:Recently, learned video compression has achieved exciting performance. Following the traditional hybrid prediction coding framework, most learned methods generally adopt the motion estimation motion compensation (MEMC) method to remove inter-frame redundancy. However, inaccurate motion vector (MV) usually lead to the distortion of reconstructed frame. In addition, most approaches ignore the spatial and channel redundancy. To solve above problems, we propose a motion-aware and spatial-temporal-channel contextual coding based video compression network (MASTC-VC), which learns the latent representation and uses variational autoencoders (VAEs) to capture the characteristics of intra-frame pixels and inter-frame motion. Specifically, we design a multiscale motion-aware module (MS-MAM) to estimate spatial-temporal-channel consistent motion vector by utilizing the multiscale motion prediction information in a coarse-to-fine way. On the top of it, we further propose a spatial-temporal-channel contextual module (STCCM), which explores the correlation of latent representation to reduce the bit consumption from spatial, temporal and channel aspects respectively. Comprehensive experiments show that our proposed MASTC-VC is surprior to previous state-of-the-art (SOTA) methods on three public benchmark datasets. More specifically, our method brings average 10.15\% BD-rate savings against H.265/HEVC (HM-16.20) in PSNR metric and average 23.93\% BD-rate savings against H.266/VVC (VTM-13.2) in MS-SSIM metric.
Abstract:As the trend towards small, safe, smart, speedy and swarm development grows, unmanned aerial vehicles (UAVs) are becoming increasingly popular for a wide range of applications. In this letter, the challenge of wideband spectrum acquisition for the UAV swarms is studied by proposing a processing method that features lower power consumption, higher compression rates, and a lower signal-to-noise ratio. Our system is equipped with multiple UAVs, each with a different sub-sampling rate. That allows for frequency backetization and estimation based on sparse Fourier transform theory. Unlike other techniques, the collisions and iterations caused by non-sparsity environ-ments are considered. We introduce sparse coding Fourier transform to address these issues. The key is to code the entire spectrum and decode it through spectrum correlation in the code. Simulation results show that our proposed method performs well in acquiring both narrowband and wideband signals simultaneously, compared to the other methods.
Abstract:Distributed unmanned aerial vehicle (UAV) swarms are formed by multiple UAVs with increased portability, higher levels of sensing capabilities, and more powerful autonomy. These features make them attractive for many recent applica-tions, potentially increasing the shortage of spectrum resources. In this paper, wideband spectrum sensing augmented technology is discussed for distributed UAV swarms to improve the utilization of spectrum. However, the sub-Nyquist sampling applied in existing schemes has high hardware complexity, power consumption, and low recovery efficiency for non-strictly sparse conditions. Thus, the Nyquist folding receiver (NYFR) is considered for the distributed UAV swarms, which can theoretically achieve full-band spectrum detection and reception using a single analog-to-digital converter (ADC) at low speed for all circuit components. There is a focus on the sensing model of two multichannel scenarios for the distributed UAV swarms, one with a complete functional receiver for the UAV swarm with RIS, and another with a decentralized UAV swarm equipped with a complete functional receiver for each UAV element. The key issue is to consider whether the application of RIS technology will bring advantages to spectrum sensing and the data fusion problem of decentralized UAV swarms based on the NYFR architecture. Therefore, the property for multiple pulse reconstruction is analyzed through the Gershgorin circle theorem, especially for very short pulses. Further, the block sparse recovery property is analyzed for wide bandwidth signals. The proposed technology can improve the processing capability for multiple signals and wide bandwidth signals while reducing interference from folded noise and subsampled harmonics. Experiment results show augmented spectrum sensing efficiency under non-strictly sparse conditions.
Abstract:The limited availability of spectrum resources has been growing into a critical problem in wireless communications, remote sensing, and electronic surveillance, etc. To address the high-speed sampling bottleneck of wideband spectrum sensing, a fast and practical solution of power spectrum estimation for Nyquist folding receiver (NYFR) is proposed in this paper. The NYFR architectures is can theoretically achieve the full-band signal sensing with a hundred percent of probability of intercept. But the existing algorithm is difficult to realize in real-time due to its high complexity and complicated calculations. By exploring the sub-sampling principle inherent in NYFR, a computationally efficient method is introduced with compressive covariance sensing. That can be efficient implemented via only the non-uniform fast Fourier transform, fast Fourier transform, and some simple multiplication operations. Meanwhile, the state-of-the-art power spectrum reconstruction model for NYFR of time-domain and frequency-domain is constructed in this paper as a comparison. Furthermore, the computational complexity of the proposed method scales linearly with the Nyquist-rate sampled number of samples and the sparsity of spectrum occupancy. Simulation results and discussion demonstrate that the low complexity in sampling and computation is a more practical solution to meet the real-time wideband spectrum sensing applications.
Abstract:Salient object detection segments attractive objects in scenes. RGB and thermal modalities provide complementary information and scribble annotations alleviate large amounts of human labor. Based on the above facts, we propose a scribble-supervised RGB-T salient object detection model. By a four-step solution (expansion, prediction, aggregation, and supervision), label-sparse challenge of scribble-supervised method is solved. To expand scribble annotations, we collect the superpixels that foreground scribbles pass through in RGB and thermal images, respectively. The expanded multi-modal labels provide the coarse object boundary. To further polish the expanded labels, we propose a prediction module to alleviate the sharpness of boundary. To play the complementary roles of two modalities, we combine the two into aggregated pseudo labels. Supervised by scribble annotations and pseudo labels, our model achieves the state-of-the-art performance on the relabeled RGBT-S dataset. Furthermore, the model is applied to RGB-D and video scribble-supervised applications, achieving consistently excellent performance.
Abstract:The High-Resolution Transformer (HRFormer) can maintain high-resolution representation and share global receptive fields. It is friendly towards salient object detection (SOD) in which the input and output have the same resolution. However, two critical problems need to be solved for two-modality SOD. One problem is two-modality fusion. The other problem is the HRFormer output's fusion. To address the first problem, a supplementary modality is injected into the primary modality by using global optimization and an attention mechanism to select and purify the modality at the input level. To solve the second problem, a dual-direction short connection fusion module is used to optimize the output features of HRFormer, thereby enhancing the detailed representation of objects at the output level. The proposed model, named HRTransNet, first introduces an auxiliary stream for feature extraction of supplementary modality. Then, features are injected into the primary modality at the beginning of each multi-resolution branch. Next, HRFormer is applied to achieve forwarding propagation. Finally, all the output features with different resolutions are aggregated by intra-feature and inter-feature interactive transformers. Application of the proposed model results in impressive improvement for driving two-modality SOD tasks, e.g., RGB-D, RGB-T, and light field SOD.https://github.com/liuzywen/HRTransNet
Abstract:The automatic classification of radar waveform is a fundamental technique in electronic countermeasures (ECM).Recent supervised deep learning-based methods have achieved great success in a such classification task.However, those methods require enough labeled samples to work properly and in many circumstances, it is not available.To tackle this problem, in this paper, we propose a three-stages deep radar waveform clustering(DRSC) technique to automatically group the received signal samples without labels.Firstly, a pretext model is trained in a self-supervised way with the help of several data augmentation techniques to extract the class-dependent features.Next,the pseudo-supervised contrastive training is involved to further promote the separation between the extracted class-dependent features.And finally, the unsupervised problem is converted to a semi-supervised classification problem via pseudo label generation. The simulation results show that the proposed algorithm can effectively extract class-dependent features, outperforming several unsupervised clustering methods, even reaching performance on par with the supervised deep learning-based methods.
Abstract:Salient object detection is the pixel-level dense prediction task which can highlight the prominent object in the scene. Recently U-Net framework is widely used, and continuous convolution and pooling operations generate multi-level features which are complementary with each other. In view of the more contribution of high-level features for the performance, we propose a triplet transformer embedding module to enhance them by learning long-range dependencies across layers. It is the first to use three transformer encoders with shared weights to enhance multi-level features. By further designing scale adjustment module to process the input, devising three-stream decoder to process the output and attaching depth features to color features for the multi-modal fusion, the proposed triplet transformer embedding network (TriTransNet) achieves the state-of-the-art performance in RGB-D salient object detection, and pushes the performance to a new level. Experimental results demonstrate the effectiveness of the proposed modules and the competition of TriTransNet.