Abstract:Online continual learning requires the models to learn from constant, endless streams of data. While significant efforts have been made in this field, most were focused on mitigating the catastrophic forgetting issue to achieve better classification ability, at the cost of a much heavier training workload. They overlooked that in real-world scenarios, e.g., in high-speed data stream environments, data do not pause to accommodate slow models. In this paper, we emphasize that model throughput -- defined as the maximum number of training samples that a model can process within a unit of time -- is equally important. It directly limits how much data a model can utilize and presents a challenging dilemma for current methods. With this understanding, we revisit key challenges in OCL from both empirical and theoretical perspectives, highlighting two critical issues beyond the well-documented catastrophic forgetting: Model's ignorance: the single-pass nature of OCL challenges models to learn effective features within constrained training time and storage capacity, leading to a trade-off between effective learning and model throughput; Model's myopia: the local learning nature of OCL on the current task leads the model to adopt overly simplified, task-specific features and excessively sparse classifier, resulting in the gap between the optimal solution for the current task and the global objective. To tackle these issues, we propose the Non-sparse Classifier Evolution framework (NsCE) to facilitate effective global discriminative feature learning with minimal time cost. NsCE integrates non-sparse maximum separation regularization and targeted experience replay techniques with the help of pre-trained models, enabling rapid acquisition of new globally discriminative features.
Abstract:Recent advancements in deep learning have yielded promising results for the image shadow removal task. However, most existing methods rely on binary pre-generated shadow masks. The binary nature of such masks could potentially lead to artifacts near the boundary between shadow and non-shadow areas. In view of this, inspired by the physical model of shadow formation, we introduce novel soft shadow masks specifically designed for shadow removal. To achieve such soft masks, we propose a \textit{SoftShadow} framework by leveraging the prior knowledge of pretrained SAM and integrating physical constraints. Specifically, we jointly tune the SAM and the subsequent shadow removal network using penumbra formation constraint loss and shadow removal loss. This framework enables accurate predictions of penumbra (partially shaded regions) and umbra (fully shaded regions) areas while simultaneously facilitating end-to-end shadow removal. Through extensive experiments on popular datasets, we found that our SoftShadow framework, which generates soft masks, can better restore boundary artifacts, achieve state-of-the-art performance, and demonstrate superior generalizability.
Abstract:Scribble supervised salient object detection (SSSOD) constructs segmentation ability of attractive objects from surroundings under the supervision of sparse scribble labels. For the better segmentation, depth and thermal infrared modalities serve as the supplement to RGB images in the complex scenes. Existing methods specifically design various feature extraction and multi-modal fusion strategies for RGB, RGB-Depth, RGB-Thermal, and Visual-Depth-Thermal image input respectively, leading to similar model flood. As the recently proposed Segment Anything Model (SAM) possesses extraordinary segmentation and prompt interactive capability, we propose an SSSOD family based on SAM, named SSFam, for the combination input with different modalities. Firstly, different modal-aware modulators are designed to attain modal-specific knowledge which cooperates with modal-agnostic information extracted from the frozen SAM encoder for the better feature ensemble. Secondly, a siamese decoder is tailored to bridge the gap between the training with scribble prompt and the testing with no prompt for the stronger decoding ability. Our model demonstrates the remarkable performance among combinations of different modalities and refreshes the highest level of scribble supervised methods and comes close to the ones of fully supervised methods. https://github.com/liuzywen/SSFam
Abstract:In reality, data often exhibit associations with multiple labels, making multi-label learning (MLL) become a prominent research topic. The last two decades have witnessed the success of MLL, which is indispensable from complete and accurate supervised information. However, obtaining such information in practice is always laborious and sometimes even impossible. To circumvent this dilemma, incomplete multi-label learning (InMLL) has emerged, aiming to learn from incomplete labeled data. To date, enormous InMLL works have been proposed to narrow the performance gap with complete MLL, whereas a systematic review for InMLL is still absent. In this paper, we not only attempt to fill the lacuna but also strive to pave the way for innovative research. Specifically, we retrospect the origin of InMLL, analyze the challenges of InMLL, and make a taxonomy of InMLL from the data-oriented and algorithm-oriented perspectives, respectively. Besides, we also present real applications of InMLL in various domains. More importantly, we highlight several potential future trends, including four open problems that are more in line with practice and three under-explored/unexplored techniques in addressing the challenges of InMLL, which may shed new light on developing novel research directions in the field of InMLL.
Abstract:This study explores a learning-based tri-finger robotic arm manipulating task, which requires complex movements and coordination among the fingers. By employing reinforcement learning, we train an agent to acquire the necessary skills for proficient manipulation. To enhance the efficiency and effectiveness of the learning process, two knowledge transfer strategies, fine-tuning and curriculum learning, were utilized within the soft actor-critic architecture. Fine-tuning allows the agent to leverage pre-trained knowledge and adapt it to new tasks. Several variations like model transfer, policy transfer, and across-task transfer were implemented and evaluated. To eliminate the need for pretraining, curriculum learning decomposes the advanced task into simpler, progressive stages, mirroring how humans learn. The number of learning stages, the context of the sub-tasks, and the transition timing were found to be the critical design parameters. The key factors of two learning strategies and corresponding effects were explored in context-aware and context-unaware scenarios, enabling us to identify the scenarios where the methods demonstrate optimal performance, derive conclusive insights, and contribute to a broader range of learning-based engineering applications.
Abstract:Learning binary classifiers from positive and unlabeled data (PUL) is vital in many real-world applications, especially when verifying negative examples is difficult. Despite the impressive empirical performance of recent PUL methods, challenges like accumulated errors and increased estimation bias persist due to the absence of negative labels. In this paper, we unveil an intriguing yet long-overlooked observation in PUL: \textit{resampling the positive data in each training iteration to ensure a balanced distribution between positive and unlabeled examples results in strong early-stage performance. Furthermore, predictive trends for positive and negative classes display distinctly different patterns.} Specifically, the scores (output probability) of unlabeled negative examples consistently decrease, while those of unlabeled positive examples show largely chaotic trends. Instead of focusing on classification within individual time frames, we innovatively adopt a holistic approach, interpreting the scores of each example as a temporal point process (TPP). This reformulates the core problem of PUL as recognizing trends in these scores. We then propose a novel TPP-inspired measure for trend detection and prove its asymptotic unbiasedness in predicting changes. Notably, our method accomplishes PUL without requiring additional parameter tuning or prior assumptions, offering an alternative perspective for tackling this problem. Extensive experiments verify the superiority of our method, particularly in a highly imbalanced real-world setting, where it achieves improvements of up to $11.3\%$ in key metrics. The code is available at \href{https://github.com/wxr99/HolisticPU}{https://github.com/wxr99/HolisticPU}.
Abstract:Instruction tuning is instrumental in enabling Large Language Models~(LLMs) to follow user instructions to complete various open-domain tasks. The success of instruction tuning depends on the availability of high-quality instruction data. Owing to the exorbitant cost and substandard quality of human annotation, recent works have been deeply engaged in the exploration of the utilization of powerful closed-source models to generate instruction data automatically. However, these methods carry potential risks arising from the usage requirements of powerful closed-source models, which strictly forbid the utilization of their outputs to develop machine learning models. To deal with this problem, in this work, we explore alternative approaches to generate high-quality instruction data that do not rely on closed-source models. Our exploration includes an investigation of various existing instruction generation methods, culminating in the integration of the most efficient variant with two novel strategies to enhance the quality further. Evaluation results from two benchmarks and the GPT-4 model demonstrate the effectiveness of our generated instruction data, which can outperform Alpaca, a method reliant on closed-source models. We hope that more progress can be achieved in generating high-quality instruction data without using closed-source models.
Abstract:Learning from noisy data has attracted much attention, where most methods focus on closed-set label noise. However, a more common scenario in the real world is the presence of both open-set and closed-set noise. Existing methods typically identify and handle these two types of label noise separately by designing a specific strategy for each type. However, in many real-world scenarios, it would be challenging to identify open-set examples, especially when the dataset has been severely corrupted. Unlike the previous works, we explore how models behave when faced open-set examples, and find that a part of open-set examples gradually get integrated into certain known classes, which is beneficial for the seperation among known classes. Motivated by the phenomenon, in this paper, we propose a novel two-step contrastive learning method called CECL, which aims to deal with both types of label noise by exploiting the useful information of open-set examples. Specifically, we incorporate some open-set examples into closed-set classes to enhance performance while treating others as delimiters to improve representative ability. Extensive experiments on synthetic and real-world datasets with diverse label noise demonstrate that CECL can outperform state-of-the-art methods.
Abstract:Facial action unit detection has emerged as an important task within facial expression analysis, aimed at detecting specific pre-defined, objective facial expressions, such as lip tightening and cheek raising. This paper presents our submission to the Affective Behavior Analysis in-the-wild (ABAW) 2023 Competition for AU detection. We propose a multi-modal method for facial action unit detection with visual, acoustic, and lexical features extracted from the large pre-trained models. To provide high-quality details for visual feature extraction, we apply super-resolution and face alignment to the training data and show potential performance gain. Our approach achieves the F1 score of 52.3% on the official validation set of the 5th ABAW Challenge.
Abstract:In Multi-Label Learning (MLL), it is extremely challenging to accurately annotate every appearing object due to expensive costs and limited knowledge. When facing such a challenge, a more practical and cheaper alternative should be Single Positive Multi-Label Learning (SPMLL), where only one positive label needs to be provided per sample. Existing SPMLL methods usually assume unknown labels as negatives, which inevitably introduces false negatives as noisy labels. More seriously, Binary Cross Entropy (BCE) loss is often used for training, which is notoriously not robust to noisy labels. To mitigate this issue, we customize an objective function for SPMLL by pushing only one pair of labels apart each time to prevent the domination of negative labels, which is the main culprit of fitting noisy labels in SPMLL. To further combat such noisy labels, we explore the high-rankness of label matrix, which can also push apart different labels. By directly extending from SPMLL to MLL with full labels, a unified loss applicable to both settings is derived. Experiments on real datasets demonstrate that the proposed loss not only performs more robustly to noisy labels for SPMLL but also works well for full labels. Besides, we empirically discover that high-rankness can mitigate the dramatic performance drop in SPMLL. Most surprisingly, even without any regularization or fine-tuned label correction, only adopting our loss defeats state-of-the-art SPMLL methods on CUB, a dataset that severely lacks labels.