Abstract:Adam is one of the most popular optimization algorithms in deep learning. However, it is known that Adam does not converge in theory unless choosing a hyperparameter, i.e., $\beta_2$, in a problem-dependent manner. There have been many attempts to fix the non-convergence (e.g., AMSGrad), but they require an impractical assumption that the gradient noise is uniformly bounded. In this paper, we propose a new adaptive gradient method named ADOPT, which achieves the optimal convergence rate of $\mathcal{O} ( 1 / \sqrt{T} )$ with any choice of $\beta_2$ without depending on the bounded noise assumption. ADOPT addresses the non-convergence issue of Adam by removing the current gradient from the second moment estimate and changing the order of the momentum update and the normalization by the second moment estimate. We also conduct intensive numerical experiments, and verify that our ADOPT achieves superior results compared to Adam and its variants across a wide range of tasks, including image classification, generative modeling, natural language processing, and deep reinforcement learning. The implementation is available at https://github.com/iShohei220/adopt.
Abstract:Recent large language models (LLMs) have demonstrated remarkable generalization abilities in mathematics and logical reasoning tasks. Prior research indicates that LLMs pre-trained with programming language data exhibit high mathematical and reasoning abilities; however, this causal relationship has not been rigorously tested. Our research aims to verify which programming languages and features during pre-training affect logical inference performance. Specifically, we pre-trained decoder-based language models from scratch using datasets from ten programming languages (e.g., Python, C, Java) and three natural language datasets (Wikipedia, Fineweb, C4) under identical conditions. Thereafter, we evaluated the trained models in a few-shot in-context learning setting on logical reasoning tasks: FLD and bAbi, which do not require commonsense or world knowledge. The results demonstrate that nearly all models trained with programming languages consistently outperform those trained with natural languages, indicating that programming languages contain factors that elicit logic inference performance. In addition, we found that models trained with programming languages exhibit a better ability to follow instructions compared to those trained with natural languages. Further analysis reveals that the depth of Abstract Syntax Trees representing parsed results of programs also affects logical reasoning performance. These findings will offer insights into the essential elements of pre-training for acquiring the foundational abilities of LLMs.
Abstract:As large language models (LLMs) are applied across diverse domains, the ability to selectively unlearn specific information has become increasingly essential. For instance, LLMs are expected to provide confidential information to authorized internal users, such as employees or trusted partners, while withholding it from external users, including the general public and unauthorized entities. In response to this challenge, we propose a novel method termed ``in-context knowledge unlearning'', which enables the model to selectively forget information in test-time based on the context of the query. Our method fine-tunes pre-trained LLMs to enable prompt unlearning of target knowledge within the context, while preserving other knowledge. Experiments on the TOFU and AGE datasets using Llama2-7B/13B and Mistral-7B models show our method achieves up to 95% forgetting accuracy while retaining 80% of unrelated knowledge, significantly outperforming baselines in both in-domain and out-of-domain scenarios. Further investigation into the model's internal behavior revealed that while fine-tuned LLMs generate correct predictions in the middle layers and maintain them up to the final layer, they make the decision to forget at the last layer, i.e., ``LLMs pretend to forget''. Our findings offer valuable insights into enhancing the robustness of unlearning mechanisms in LLMs, setting a foundation for future research in the field.
Abstract:The ability (and inability) of large language models (LLMs) to perform arithmetic tasks has been the subject of much theoretical and practical debate. We show that LLMs are frequently able to correctly and confidently predict the first digit of n-digit by m-digit multiplication tasks without using chain of thought reasoning, despite these tasks require compounding operations to solve. Simultaneously, LLMs in practice often fail to correctly or confidently predict the last digit of an n-digit by m-digit multiplication, a task equivalent to 1-digit by 1-digit multiplication which can be easily learned or memorized. We show that the latter task can be solved more robustly when the LLM is conditioned on all of the correct higher-order digits, which on average increases the confidence of the correct last digit on 5-digit by 5-digit multiplication tasks using Llama 2-13B by over 230% (0.13 to 0.43) and Mistral-7B by 150% (0.22 to 0.55).
Abstract:Current decoder-based pre-trained language models (PLMs) successfully demonstrate multilingual capabilities. However, it is unclear how these models handle multilingualism. We analyze the neuron-level internal behavior of multilingual decoder-based PLMs, Specifically examining the existence of neurons that fire ``uniquely for each language'' within decoder-only multilingual PLMs. We analyze six languages: English, German, French, Spanish, Chinese, and Japanese, and show that language-specific neurons are unique, with a slight overlap (< 5%) between languages. These neurons are mainly distributed in the models' first and last few layers. This trend remains consistent across languages and models. Additionally, we tamper with less than 1% of the total neurons in each model during inference and demonstrate that tampering with a few language-specific neurons drastically changes the probability of target language occurrence in text generation.
Abstract:Grokking has been actively explored to reveal the mystery of delayed generalization. Identifying interpretable algorithms inside the grokked models is a suggestive hint to understanding its mechanism. In this work, beyond the simplest and well-studied modular addition, we observe the internal circuits learned through grokking in complex modular arithmetic via interpretable reverse engineering, which highlights the significant difference in their dynamics: subtraction poses a strong asymmetry on Transformer; multiplication requires cosine-biased components at all the frequencies in a Fourier domain; polynomials often result in the superposition of the patterns from elementary arithmetic, but clear patterns do not emerge in challenging cases; grokking can easily occur even in higher-degree formulas with basic symmetric and alternating expressions. We also introduce the novel progress measure for modular arithmetic; Fourier Frequency Sparsity and Fourier Coefficient Ratio, which not only indicate the late generalization but also characterize distinctive internal representations of grokked models per modular operation. Our empirical analysis emphasizes the importance of holistic evaluation among various combinations.
Abstract:While Large Language Models (LLMs) have achieved remarkable performance in many tasks, much about their inner workings remains unclear. In this study, we present novel experimental insights into the resilience of LLMs, particularly GPT-4, when subjected to extensive character-level permutations. To investigate this, we first propose the Scrambled Bench, a suite designed to measure the capacity of LLMs to handle scrambled input, in terms of both recovering scrambled sentences and answering questions given scrambled context. The experimental results indicate that most powerful LLMs demonstrate the capability akin to typoglycemia, a phenomenon where humans can understand the meaning of words even when the letters within those words are scrambled, as long as the first and last letters remain in place. More surprisingly, we found that only GPT-4 nearly flawlessly processes inputs with unnatural errors, even under the extreme condition, a task that poses significant challenges for other LLMs and often even for humans. Specifically, GPT-4 can almost perfectly reconstruct the original sentences from scrambled ones, decreasing the edit distance by 95%, even when all letters within each word are entirely scrambled. It is counter-intuitive that LLMs can exhibit such resilience despite severe disruption to input tokenization caused by scrambled text.
Abstract:Grokking is one of the most surprising puzzles in neural network generalization: a network first reaches a memorization solution with perfect training accuracy and poor generalization, but with further training, it reaches a perfectly generalized solution. We aim to analyze the mechanism of grokking from the lottery ticket hypothesis, identifying the process to find the lottery tickets (good sparse subnetworks) as the key to describing the transitional phase between memorization and generalization. We refer to these subnetworks as ''Grokking tickets'', which is identified via magnitude pruning after perfect generalization. First, using ''Grokking tickets'', we show that the lottery tickets drastically accelerate grokking compared to the dense networks on various configurations (MLP and Transformer, and an arithmetic and image classification tasks). Additionally, to verify that ''Grokking ticket'' are a more critical factor than weight norms, we compared the ''good'' subnetworks with a dense network having the same L1 and L2 norms. Results show that the subnetworks generalize faster than the controlled dense model. In further investigations, we discovered that at an appropriate pruning rate, grokking can be achieved even without weight decay. We also show that speedup does not happen when using tickets identified at the memorization solution or transition between memorization and generalization or when pruning networks at the initialization (Random pruning, Grasp, SNIP, and Synflow). The results indicate that the weight norm of network parameters is not enough to explain the process of grokking, but the importance of finding good subnetworks to describe the transition from memorization to generalization. The implementation code can be accessed via this link: \url{https://github.com/gouki510/Grokking-Tickets}.
Abstract:Large, high-capacity models trained on diverse datasets have shown remarkable successes on efficiently tackling downstream applications. In domains from NLP to Computer Vision, this has led to a consolidation of pretrained models, with general pretrained backbones serving as a starting point for many applications. Can such a consolidation happen in robotics? Conventionally, robotic learning methods train a separate model for every application, every robot, and even every environment. Can we instead train generalist X-robot policy that can be adapted efficiently to new robots, tasks, and environments? In this paper, we provide datasets in standardized data formats and models to make it possible to explore this possibility in the context of robotic manipulation, alongside experimental results that provide an example of effective X-robot policies. We assemble a dataset from 22 different robots collected through a collaboration between 21 institutions, demonstrating 527 skills (160266 tasks). We show that a high-capacity model trained on this data, which we call RT-X, exhibits positive transfer and improves the capabilities of multiple robots by leveraging experience from other platforms. More details can be found on the project website $\href{https://robotics-transformer-x.github.io}{\text{robotics-transformer-x.github.io}}$.
Abstract:Unlike perfect information games, where all elements are known to every player, imperfect information games emulate the real-world complexities of decision-making under uncertain or incomplete information. GPT-4, the recent breakthrough in large language models (LLMs) trained on massive passive data, is notable for its knowledge retrieval and reasoning abilities. This paper delves into the applicability of GPT-4's learned knowledge for imperfect information games. To achieve this, we introduce \textbf{Suspicion-Agent}, an innovative agent that leverages GPT-4's capabilities for performing in imperfect information games. With proper prompt engineering to achieve different functions, Suspicion-Agent based on GPT-4 demonstrates remarkable adaptability across a range of imperfect information card games. Importantly, GPT-4 displays a strong high-order theory of mind (ToM) capacity, meaning it can understand others and intentionally impact others' behavior. Leveraging this, we design a planning strategy that enables GPT-4 to competently play against different opponents, adapting its gameplay style as needed, while requiring only the game rules and descriptions of observations as input. In the experiments, we qualitatively showcase the capabilities of Suspicion-Agent across three different imperfect information games and then quantitatively evaluate it in Leduc Hold'em. The results show that Suspicion-Agent can potentially outperform traditional algorithms designed for imperfect information games, without any specialized training or examples. In order to encourage and foster deeper insights within the community, we make our game-related data publicly available.