Abstract:Recently, diffusion models have demonstrated their effectiveness in generating extremely high-quality images and have found wide-ranging applications, including automatic sketch colorization. However, most existing models use text to guide the conditional generation, with fewer attempts exploring the potential advantages of using image tokens as conditional inputs for networks. As such, this paper exhaustively investigates image-guided models, specifically targeting reference-based sketch colorization, which aims to colorize sketch images using reference color images. We investigate three critical aspects of reference-based diffusion models: the shortcomings compared to text-based counterparts, the training strategies, and the capability in zero-shot, sequential text-based manipulation. We introduce two variations of an image-guided latent diffusion model using different image tokens from the pre-trained CLIP image encoder, and we propose corresponding manipulation methods to adjust their results sequentially using weighted text inputs. We conduct comprehensive evaluations of our models through qualitative and quantitative experiments, as well as a user study.