Abstract:Robust and accurate segmentation of scenes has become one core functionality in various visual recognition and navigation tasks. This has inspired the recent development of Segment Anything Model (SAM), a foundation model for general mask segmentation. However, SAM is largely tailored for single-modal RGB images, limiting its applicability to multi-modal data captured with widely-adopted sensor suites, such as LiDAR plus RGB, depth plus RGB, thermal plus RGB, etc. We develop MM-SAM, an extension and expansion of SAM that supports cross-modal and multi-modal processing for robust and enhanced segmentation with different sensor suites. MM-SAM features two key designs, namely, unsupervised cross-modal transfer and weakly-supervised multi-modal fusion, enabling label-efficient and parameter-efficient adaptation toward various sensor modalities. It addresses three main challenges: 1) adaptation toward diverse non-RGB sensors for single-modal processing, 2) synergistic processing of multi-modal data via sensor fusion, and 3) mask-free training for different downstream tasks. Extensive experiments show that MM-SAM consistently outperforms SAM by large margins, demonstrating its effectiveness and robustness across various sensors and data modalities.
Abstract:The recent Segment Anything Model (SAM) has demonstrated remarkable zero-shot capability and flexible geometric prompting in general image segmentation. However, SAM often struggles when handling various unconventional images, such as aerial, medical, and non-RGB images. This paper presents CAT-SAM, a ConditionAl Tuning network that adapts SAM toward various unconventional target tasks with just few-shot target samples. CAT-SAM freezes the entire SAM and adapts its mask decoder and image encoder simultaneously with a small number of learnable parameters. The core design is a prompt bridge structure that enables decoder-conditioned joint tuning of the heavyweight image encoder and the lightweight mask decoder. The bridging maps the prompt token of the mask decoder to the image encoder, fostering synergic adaptation of the encoder and the decoder with mutual benefits. We develop two representative tuning strategies for the image encoder which leads to two CAT-SAM variants: one injecting learnable prompt tokens in the input space and the other inserting lightweight adapter networks. Extensive experiments over 11 unconventional tasks show that both CAT-SAM variants achieve superior target segmentation performance consistently even under the very challenging one-shot adaptation setup. Project page: \url{https://xiaoaoran.github.io/projects/CAT-SAM}
Abstract:This paper introduces SpeeChain, an open-source Pytorch-based toolkit designed to develop the machine speech chain for large-scale use. This first release focuses on the TTS-to-ASR chain, a core component of the machine speech chain, that refers to the TTS data augmentation by unspoken text for ASR. To build an efficient pipeline for the large-scale TTS-to-ASR chain, we implement easy-to-use multi-GPU batch-level model inference, multi-dataloader batch generation, and on-the-fly data selection techniques. In this paper, we first explain the overall procedure of the TTS-to-ASR chain and the difficulties of each step. Then, we present a detailed ablation study on different types of unlabeled data, data filtering thresholds, batch composition, and real-synthetic data ratios. Our experimental results on train_clean_460 of LibriSpeech demonstrate that our TTS-to-ASR chain can significantly improve WER in a semi-supervised setting.
Abstract:Semi-supervised learning (SSL) improves model generalization by leveraging massive unlabeled data to augment limited labeled samples. However, currently, popular SSL evaluation protocols are often constrained to computer vision (CV) tasks. In addition, previous work typically trains deep neural networks from scratch, which is time-consuming and environmentally unfriendly. To address the above issues, we construct a Unified SSL Benchmark (USB) by selecting 15 diverse, challenging, and comprehensive tasks from CV, natural language processing (NLP), and audio processing (Audio), on which we systematically evaluate dominant SSL methods, and also open-source a modular and extensible codebase for fair evaluation on these SSL methods. We further provide pre-trained versions of the state-of-the-art neural models for CV tasks to make the cost affordable for further tuning. USB enables the evaluation of a single SSL algorithm on more tasks from multiple domains but with less cost. Specifically, on a single NVIDIA V100, only 37 GPU days are required to evaluate FixMatch on 15 tasks in USB while 335 GPU days (279 GPU days on 4 CV datasets except for ImageNet) are needed on 5 CV tasks with the typical protocol.
Abstract:Consistency regularization has recently been applied to semi-supervised sequence-to-sequence (S2S) automatic speech recognition (ASR). This principle encourages an ASR model to output similar predictions for the same input speech with different perturbations. The existing paradigm of semi-supervised S2S ASR utilizes SpecAugment as data augmentation and requires a static teacher model to produce pseudo transcripts for untranscribed speech. However, this paradigm fails to take full advantage of consistency regularization. First, the masking operations of SpecAugment may damage the linguistic contents of the speech, thus influencing the quality of pseudo labels. Second, S2S ASR requires both input speech and prefix tokens to make the next prediction. The static prefix tokens made by the offline teacher model cannot match dynamic pseudo labels during consistency training. In this work, we propose an improved consistency training paradigm of semi-supervised S2S ASR. We utilize speech chain reconstruction as the weak augmentation to generate high-quality pseudo labels. Moreover, we demonstrate that dynamic pseudo transcripts produced by the student ASR model benefit the consistency training. Experiments on LJSpeech and LibriSpeech corpora show that compared to supervised baselines, our improved paradigm achieves a 12.2% CER improvement in the single-speaker setting and 38.6% in the multi-speaker setting.