Abstract:Long-form document matching aims to judge the relevance between two documents and has been applied to various scenarios. Most existing works utilize hierarchical or long context models to process documents, which achieve coarse understanding but may ignore details. Some researchers construct a document view with similar sentences about aligned document subtopics to focus on detailed matching signals. However, a long document generally contains multiple subtopics. The matching signals are heterogeneous from multiple topics. Considering only the homologous aligned subtopics may not be representative enough and may cause biased modeling. In this paper, we introduce a new framework to model representative matching signals. First, we propose to capture various matching signals through subtopics of document pairs. Next, We construct multiple document views based on subtopics to cover heterogeneous and valuable details. However, existing spatial aggregation methods like attention, which integrate all these views simultaneously, are hard to integrate heterogeneous information. Instead, we propose temporal aggregation, which effectively integrates different views gradually as the training progresses. Experimental results show that our learning framework is effective on several document-matching tasks, including news duplication and legal case retrieval.
Abstract:Legal case retrieval, which aims to retrieve relevant cases to a given query case, benefits judgment justice and attracts increasing attention. Unlike generic retrieval queries, legal case queries are typically long and the definition of relevance is closely related to legal-specific elements. Therefore, legal case queries may suffer from noise and sparsity of salient content, which hinders retrieval models from perceiving correct information in a query. While previous studies have paid attention to improving retrieval models and understanding relevance judgments, we focus on enhancing legal case retrieval by utilizing the salient content in legal case queries. We first annotate the salient content in queries manually and investigate how sparse and dense retrieval models attend to those content. Then we experiment with various query content selection methods utilizing large language models (LLMs) to extract or summarize salient content and incorporate it into the retrieval models. Experimental results show that reformulating long queries using LLMs improves the performance of both sparse and dense models in legal case retrieval.