Abstract:Sepsis is a life-threatening condition defined by end-organ dysfunction due to a dysregulated host response to infection. Although the Surviving Sepsis Campaign has launched and has been releasing sepsis treatment guidelines to unify and normalize the care for sepsis patients, it has been reported in numerous studies that disparities in care exist across the trajectory of patient stay in the emergency department and intensive care unit. Here, we apply a number of reinforcement learning techniques including behavioral cloning, imitation learning, and inverse reinforcement learning, to learn the optimal policy in the management of septic patient subgroups using expert demonstrations. Then we estimate the counterfactual optimal policies by applying the model to another subset of unseen medical populations and identify the difference in cure by comparing it to the real policy. Our data comes from the sepsis cohort of MIMIC-IV and the clinical data warehouses of the Mass General Brigham healthcare system. The ultimate objective of this work is to use the optimal learned policy function to estimate the counterfactual treatment policy and identify deviations across sub-populations of interest. We hope this approach would help us identify any disparities in care and also changes in cure in response to the publication of national sepsis treatment guidelines.
Abstract:Effective, reliable, and scalable development of machine learning (ML) solutions for structured electronic health record (EHR) data requires the ability to reliably generate high-quality baseline models for diverse supervised learning tasks in an efficient and performant manner. Historically, producing such baseline models has been a largely manual effort--individual researchers would need to decide on the particular featurization and tabularization processes to apply to their individual raw, longitudinal data; and then train a supervised model over those data to produce a baseline result to compare novel methods against, all for just one task and one dataset. In this work, powered by complementary advances in core data standardization through the MEDS framework, we dramatically simplify and accelerate this process of tabularizing irregularly sampled time-series data, providing researchers the ability to automatically and scalably featurize and tabularize their longitudinal EHR data across tens of thousands of individual features, hundreds of millions of clinical events, and diverse windowing horizons and aggregation strategies, all before ultimately leveraging these tabular data to automatically produce high-caliber XGBoost baselines in a highly computationally efficient manner. This system scales to dramatically larger datasets than tabularization tools currently available to the community and enables researchers with any MEDS format dataset to immediately begin producing reliable and performant baseline prediction results on various tasks, with minimal human effort required. This system will greatly enhance the reliability, reproducibility, and ease of development of powerful ML solutions for health problems across diverse datasets and clinical settings.
Abstract:Medical Decision-Making (MDM) is a multi-faceted process that requires clinicians to assess complex multi-modal patient data patient, often collaboratively. Large Language Models (LLMs) promise to streamline this process by synthesizing vast medical knowledge and multi-modal health data. However, single-agent are often ill-suited for nuanced medical contexts requiring adaptable, collaborative problem-solving. Our MDAgents addresses this need by dynamically assigning collaboration structures to LLMs based on task complexity, mimicking real-world clinical collaboration and decision-making. This framework improves diagnostic accuracy and supports adaptive responses in complex, real-world medical scenarios, making it a valuable tool for clinicians in various healthcare settings, and at the same time, being more efficient in terms of computing cost than static multi-agent decision making methods.
Abstract:Foundation models have become invaluable in advancing the medical field. Despite their promise, the strategic deployment of LLMs for effective utility in complex medical tasks remains an open question. Our novel framework, Medical Decision-making Agents (MDAgents) aims to address this gap by automatically assigning the effective collaboration structure for LLMs. Assigned solo or group collaboration structure is tailored to the complexity of the medical task at hand, emulating real-world medical decision making processes. We evaluate our framework and baseline methods with state-of-the-art LLMs across a suite of challenging medical benchmarks: MedQA, MedMCQA, PubMedQA, DDXPlus, PMC-VQA, Path-VQA, and MedVidQA, achieving the best performance in 5 out of 7 benchmarks that require an understanding of multi-modal medical reasoning. Ablation studies reveal that MDAgents excels in adapting the number of collaborating agents to optimize efficiency and accuracy, showcasing its robustness in diverse scenarios. We also explore the dynamics of group consensus, offering insights into how collaborative agents could behave in complex clinical team dynamics. Our code can be found at https://github.com/mitmedialab/MDAgents.
Abstract:The third ML4H symposium was held in person on December 10, 2023, in New Orleans, Louisiana, USA. The symposium included research roundtable sessions to foster discussions between participants and senior researchers on timely and relevant topics for the \ac{ML4H} community. Encouraged by the successful virtual roundtables in the previous year, we organized eleven in-person roundtables and four virtual roundtables at ML4H 2022. The organization of the research roundtables at the conference involved 17 Senior Chairs and 19 Junior Chairs across 11 tables. Each roundtable session included invited senior chairs (with substantial experience in the field), junior chairs (responsible for facilitating the discussion), and attendees from diverse backgrounds with interest in the session's topic. Herein we detail the organization process and compile takeaways from these roundtable discussions, including recent advances, applications, and open challenges for each topic. We conclude with a summary and lessons learned across all roundtables. This document serves as a comprehensive review paper, summarizing the recent advancements in machine learning for healthcare as contributed by foremost researchers in the field.
Abstract:In clinical practice, one often needs to identify whether a patient is at high risk of adverse outcomes after some key medical event; e.g., the short-term risk of death after an admission for heart failure. This task, however, remains challenging due to the complexity, variability, and heterogeneity of longitudinal medical data, especially for individuals suffering from chronic diseases like heart failure. In this paper, we introduce Event-Based Contrastive Learning (EBCL) - a method for learning embeddings of heterogeneous patient data that preserves temporal information before and after key index events. We demonstrate that EBCL produces models that yield better fine-tuning performance on critical downstream tasks including 30-day readmission, 1-year mortality, and 1-week length of stay relative to other representation learning methods that do not exploit temporal information surrounding key medical events.
Abstract:Heart failure is a debilitating condition that affects millions of people worldwide and has a significant impact on their quality of life and mortality rates. An objective assessment of cardiac pressures remains an important method for the diagnosis and treatment prognostication for patients with heart failure. Although cardiac catheterization is the gold standard for estimating central hemodynamic pressures, it is an invasive procedure that carries inherent risks, making it a potentially dangerous procedure for some patients. Approaches that leverage non-invasive signals - such as electrocardiogram (ECG) - have the promise to make the routine estimation of cardiac pressures feasible in both inpatient and outpatient settings. Prior models trained to estimate intracardiac pressures (e.g., mean pulmonary capillary wedge pressure (mPCWP)) in a supervised fashion have shown good discriminatory ability but have been limited to the labeled dataset from the heart failure cohort. To address this issue and build a robust representation, we apply deep metric learning (DML) and propose a novel self-supervised DML with distance-based mining that improves the performance of a model with limited labels. We use a dataset that contains over 5.4 million ECGs without concomitant central pressure labels to pre-train a self-supervised DML model which showed improved classification of elevated mPCWP compared to self-supervised contrastive baselines. Additionally, the supervised DML model that is using ECGs with access to 8,172 mPCWP labels demonstrated significantly better performance on the mPCWP regression task compared to the supervised baseline. Moreover, our data suggest that DML yields models that are performant across patient subgroups, even when some patient subgroups are under-represented in the dataset. Our code is available at https://github.com/mandiehyewon/ssldml
Abstract:The proliferation of deep learning-based machine vision applications has given rise to a new type of compression, so called video coding for machine (VCM). VCM differs from traditional video coding in that it is optimized for machine vision performance instead of human visual quality. In the feature compression track of MPEG-VCM, multi-scale features extracted from images are subject to compression. Recent feature compression works have demonstrated that the versatile video coding (VVC) standard-based approach can achieve a BD-rate reduction of up to 96% against MPEG-VCM feature anchor. However, it is still sub-optimal as VVC was not designed for extracted features but for natural images. Moreover, the high encoding complexity of VVC makes it difficult to design a lightweight encoder without sacrificing performance. To address these challenges, we propose a novel multi-scale feature compression method that enables both the end-to-end optimization on the extracted features and the design of lightweight encoders. The proposed model combines a learnable compressor with a multi-scale feature fusion network so that the redundancy in the multi-scale features is effectively removed. Instead of simply cascading the fusion network and the compression network, we integrate the fusion and encoding processes in an interleaved way. Our model first encodes a larger-scale feature to obtain a latent representation and then fuses the latent with a smaller-scale feature. This process is successively performed until the smallest-scale feature is fused and then the encoded latent at the final stage is entropy-coded for transmission. The results show that our model outperforms previous approaches by at least 52% BD-rate reduction and has $\times5$ to $\times27$ times less encoding time for object detection...
Abstract:Electroencephalogram (EEG) is an important diagnostic test that physicians use to record brain activity and detect seizures by monitoring the signals. There have been several attempts to detect seizures and abnormalities in EEG signals with modern deep learning models to reduce the clinical burden. However, they cannot be fairly compared against each other as they were tested in distinct experimental settings. Also, some of them are not trained in real-time seizure detection tasks, making it hard for on-device applications. Therefore in this work, for the first time, we extensively compare multiple state-of-the-art models and signal feature extractors in a real-time seizure detection framework suitable for real-world application, using various evaluation metrics including a new one we propose to evaluate more practical aspects of seizure detection models. Our code is available at https://github.com/AITRICS/EEG_real_time_seizure_detection.
Abstract:Although recent multi-task learning methods have shown to be effective in improving the generalization of deep neural networks, they should be used with caution for safety-critical applications, such as clinical risk prediction. This is because even if they achieve improved task-average performance, they may still yield degraded performance on individual tasks, which may be critical (e.g., prediction of mortality risk). Existing asymmetric multi-task learning methods tackle this negative transfer problem by performing knowledge transfer from tasks with low loss to tasks with high loss. However, using loss as a measure of reliability is risky since it could be a result of overfitting. In the case of time-series prediction tasks, knowledge learned for one task (e.g., predicting the sepsis onset) at a specific timestep may be useful for learning another task (e.g., prediction of mortality) at a later timestep, but lack of loss at each timestep makes it difficult to measure the reliability at each timestep. To capture such dynamically changing asymmetric relationships between tasks in time-series data, we propose a novel temporal asymmetric multi-task learning model that performs knowledge transfer from certain tasks/timesteps to relevant uncertain tasks, based on feature-level uncertainty. We validate our model on multiple clinical risk prediction tasks against various deep learning models for time-series prediction, which our model significantly outperforms, without any sign of negative transfer. Further qualitative analysis of learned knowledge graphs by clinicians shows that they are helpful in analyzing the predictions of the model. Our final code is available at https://github.com/anhtuan5696/TPAMTL.