Abstract:In this paper, we introduce a nonparametric end-to-end method for probabilistic forecasting of distributed renewable generation outputs while including missing data imputation. Firstly, we employ a nonparametric probabilistic forecast model utilizing the long short-term memory (LSTM) network to model the probability distributions of distributed renewable generations' outputs. Secondly, we design an end-to-end training process that includes missing data imputation through iterative imputation and iterative loss-based training procedures. This two-step modeling approach effectively combines the strengths of the nonparametric method with the end-to-end approach. Consequently, our approach demonstrates exceptional capabilities in probabilistic forecasting for the outputs of distributed renewable generations while effectively handling missing values. Simulation results confirm the superior performance of our approach compared to existing alternatives.
Abstract:Addressing the large distribution gap between training and testing data has long been a challenge in machine learning, giving rise to fields such as transfer learning and domain adaptation. Recently, Continuous Domain Adaptation (CDA) has emerged as an effective technique, closing this gap by utilizing a series of intermediate domains. This paper contributes a novel CDA method, W-MPOT, which rigorously addresses the domain ordering and error accumulation problems overlooked by previous studies. Specifically, we construct a transfer curriculum over the source and intermediate domains based on Wasserstein distance, motivated by theoretical analysis of CDA. Then we transfer the source model to the target domain through multiple valid paths in the curriculum using a modified version of continuous optimal transport. A bidirectional path consistency constraint is introduced to mitigate the impact of accumulated mapping errors during continuous transfer. We extensively evaluate W-MPOT on multiple datasets, achieving up to 54.1\% accuracy improvement on multi-session Alzheimer MR image classification and 94.7\% MSE reduction on battery capacity estimation.
Abstract:Visual commonsense reasoning (VCR) is a challenging multi-modal task, which requires high-level cognition and commonsense reasoning ability about the real world. In recent years, large-scale pre-training approaches have been developed and promoted the state-of-the-art performance of VCR. However, the existing approaches almost employ the BERT-like objectives to learn multi-modal representations. These objectives motivated from the text-domain are insufficient for the excavation on the complex scenario of visual modality. Most importantly, the spatial distribution of the visual objects is basically neglected. To address the above issue, we propose to construct the spatial relation graph based on the given visual scenario. Further, we design two pre-training tasks named object position regression (OPR) and spatial relation classification (SRC) to learn to reconstruct the spatial relation graph respectively. Quantitative analysis suggests that the proposed method can guide the representations to maintain more spatial context and facilitate the attention on the essential visual regions for reasoning. We achieve the state-of-the-art results on VCR and two other vision-and-language reasoning tasks VQA, and NLVR.
Abstract:This paper studies an adaptive approach for probabilistic wind power forecasting (WPF) including offline and online learning procedures. In the offline learning stage, a base forecast model is trained via inner and outer loop updates of meta-learning, which endows the base forecast model with excellent adaptability to different forecast tasks, i.e., probabilistic WPF with different lead times or locations. In the online learning stage, the base forecast model is applied to online forecasting combined with incremental learning techniques. On this basis, the online forecast takes full advantage of recent information and the adaptability of the base forecast model. Two applications are developed based on our proposed approach concerning forecasting with different lead times (temporal adaptation) and forecasting for newly established wind farms (spatial adaptation), respectively. Numerical tests were conducted on real-world wind power data sets. Simulation results validate the advantages in adaptivity of the proposed methods compared with existing alternatives.
Abstract:A one-step two-critic deep reinforcement learning (OSTC-DRL) approach for inverter-based volt-var control (IB-VVC) in active distribution networks is proposed in this paper. Firstly, considering IB-VVC can be formulated as a single-period optimization problem, we formulate the IB-VVC as a one-step Markov decision process rather than the standard Markov decision process, which simplifies the DRL learning task. Then we design the one-step actor-critic DRL scheme which is a simplified version of recent DRL algorithms, and it avoids the issue of Q value overestimation successfully. Furthermore, considering two objectives of VVC: minimizing power loss and eliminating voltage violation, we utilize two critics to approximate the rewards of two objectives separately. It simplifies the approximation tasks of each critic, and avoids the interaction effect between two objectives in the learning process of critic. The OSTC-DRL approach integrates the one-step actor-critic DRL scheme and the two-critic technology. Based on the OSTC-DRL, we design two centralized DRL algorithms. Further, we extend the OSTC-DRL to multi-agent OSTC-DRL for decentralized IB-VVC and design two multi-agent DRL algorithms. Simulations demonstrate that the proposed OSTC-DRL has a faster convergence rate and a better control performance, and the multi-agent OSTC-DRL works well for decentralized IB-VVC problems.
Abstract:Semi-supervised learning aims to leverage a large amount of unlabeled data for performance boosting. Existing works primarily focus on image classification. In this paper, we delve into semi-supervised learning for object detection, where labeled data are more labor-intensive to collect. Current methods are easily distracted by noisy regions generated by pseudo labels. To combat the noisy labeling, we propose noise-resistant semi-supervised learning by quantifying the region uncertainty. We first investigate the adverse effects brought by different forms of noise associated with pseudo labels. Then we propose to quantify the uncertainty of regions by identifying the noise-resistant properties of regions over different strengths. By importing the region uncertainty quantification and promoting multipeak probability distribution output, we introduce uncertainty into training and further achieve noise-resistant learning. Experiments on both PASCAL VOC and MS COCO demonstrate the extraordinary performance of our method.
Abstract:A multivariate density forecast model based on deep learning is designed in this paper to forecast the joint cumulative distribution functions (JCDFs) of multiple security margins in power systems. Differing from existing multivariate density forecast models, the proposed method requires no a priori hypotheses on the distribution of forecasting targets. In addition, based on the universal approximation capability of neural networks, the value domain of the proposed approach has been proven to include all continuous JCDFs. The forecasted JCDF is further employed to calculate the deterministic security assessment index evaluating the security level of future power system operations. Numerical tests verify the superiority of the proposed method over current multivariate density forecast models. The deterministic security assessment index is demonstrated to be more informative for operators than security margins as well.
Abstract:In this paper, we delve into semi-supervised object detection where unlabeled images are leveraged to break through the upper bound of fully-supervised object detection models. Previous semi-supervised methods based on pseudo labels are severely degenerated by noise and prone to overfit to noisy labels, thus are deficient in learning different unlabeled knowledge well. To address this issue, we propose a data-uncertainty guided multi-phase learning method for semi-supervised object detection. We comprehensively consider divergent types of unlabeled images according to their difficulty levels, utilize them in different phases and ensemble models from different phases together to generate ultimate results. Image uncertainty guided easy data selection and region uncertainty guided RoI Re-weighting are involved in multi-phase learning and enable the detector to concentrate on more certain knowledge. Through extensive experiments on PASCAL VOC and MS COCO, we demonstrate that our method behaves extraordinarily compared to baseline approaches and outperforms them by a large margin, more than 3% on VOC and 2% on COCO.
Abstract:Intervertebral discs (IVDs), as small joints lying between adjacent vertebrae, have played an important role in pressure buffering and tissue protection. The fully-automatic localization and segmentation of IVDs have been discussed in the literature for many years since they are crucial to spine disease diagnosis and provide quantitative parameters in the treatment. Traditionally hand-crafted features are derived based on image intensities and shape priors to localize and segment IVDs. With the advance of deep learning, various neural network models have gained great success in image analysis including the recognition of intervertebral discs. Particularly, U-Net stands out among other approaches due to its outstanding performance on biomedical images with a relatively small set of training data. This paper proposes a novel convolutional framework based on 3D U-Net to segment IVDs from multi-modality MRI images. We first localize the centers of intervertebral discs in each spine sample and then train the network based on the cropped small volumes centered at the localized intervertebral discs. A detailed comprehensive analysis of the results using various combinations of multi-modalities is presented. Furthermore, experiments conducted on 2D and 3D U-Nets with augmented and non-augmented datasets are demonstrated and compared in terms of Dice coefficient and Hausdorff distance. Our method has proved to be effective with a mean segmentation Dice coefficient of 89.0% and a standard deviation of 1.4%.
Abstract:Generic object detection is one of the most fundamental and important problems in computer vision. When it comes to large scale object detection for thousands of categories, it is unpractical to provide all the bounding box labels for each category. In this paper, we propose a novel hierarchical structure and joint training framework for large scale semi-supervised object detection. First, we utilize the relationships among target categories to model a hierarchical network to further improve the performance of recognition. Second, we combine bounding-box-level labeled images and image-level labeled images together for joint training, and the proposed method can be easily applied in current two-stage object detection framework with excellent performance. Experimental results show that the proposed large scale semi-supervised object detection network obtains the state-of-the-art performance, with the mAP of 38.1% on the ImageNet detection validation dataset.