Abstract:Language models have shown promising performance on the task of translating natural language questions into SQL queries (Text-to-SQL). However, most of the state-of-the-art (SOTA) approaches rely on powerful yet closed-source large language models (LLMs), such as ChatGPT and GPT-4, which may have the limitations of unclear model architectures, data privacy risks, and expensive inference overheads. To address the limitations, we introduce CodeS, a series of pre-trained language models with parameters ranging from 1B to 15B, specifically designed for the text-to-SQL task. CodeS is a fully open-source language model, which achieves superior accuracy with much smaller parameter sizes. This paper studies the research challenges in building CodeS. To enhance the SQL generation abilities of CodeS, we adopt an incremental pre-training approach using a specifically curated SQL-centric corpus. Based on this, we address the challenges of schema linking and rapid domain adaptation through strategic prompt construction and a bi-directional data augmentation technique. We conduct comprehensive evaluations on multiple datasets, including the widely used Spider benchmark, the newly released BIRD benchmark, robustness-diagnostic benchmarks such as Spider-DK, Spider-Syn, Spider-Realistic, and Dr.Spider, as well as two real-world datasets created for financial and academic applications. The experimental results show that our CodeS achieves new SOTA accuracy and robustness on nearly all challenging text-to-SQL benchmarks.
Abstract:Addressing the large distribution gap between training and testing data has long been a challenge in machine learning, giving rise to fields such as transfer learning and domain adaptation. Recently, Continuous Domain Adaptation (CDA) has emerged as an effective technique, closing this gap by utilizing a series of intermediate domains. This paper contributes a novel CDA method, W-MPOT, which rigorously addresses the domain ordering and error accumulation problems overlooked by previous studies. Specifically, we construct a transfer curriculum over the source and intermediate domains based on Wasserstein distance, motivated by theoretical analysis of CDA. Then we transfer the source model to the target domain through multiple valid paths in the curriculum using a modified version of continuous optimal transport. A bidirectional path consistency constraint is introduced to mitigate the impact of accumulated mapping errors during continuous transfer. We extensively evaluate W-MPOT on multiple datasets, achieving up to 54.1\% accuracy improvement on multi-session Alzheimer MR image classification and 94.7\% MSE reduction on battery capacity estimation.
Abstract:Accurately estimating the 3D pose of humans in video sequences requires both accuracy and a well-structured architecture. With the success of transformers, we introduce the Refined Temporal Pyramidal Compression-and-Amplification (RTPCA) transformer. Exploiting the temporal dimension, RTPCA extends intra-block temporal modeling via its Temporal Pyramidal Compression-and-Amplification (TPCA) structure and refines inter-block feature interaction with a Cross-Layer Refinement (XLR) module. In particular, TPCA block exploits a temporal pyramid paradigm, reinforcing key and value representation capabilities and seamlessly extracting spatial semantics from motion sequences. We stitch these TPCA blocks with XLR that promotes rich semantic representation through continuous interaction of queries, keys, and values. This strategy embodies early-stage information with current flows, addressing typical deficits in detail and stability seen in other transformer-based methods. We demonstrate the effectiveness of RTPCA by achieving state-of-the-art results on Human3.6M, HumanEva-I, and MPI-INF-3DHP benchmarks with minimal computational overhead. The source code is available at https://github.com/hbing-l/RTPCA.
Abstract:The current 3D human pose estimators face challenges in adapting to new datasets due to the scarcity of 2D-3D pose pairs in target domain training sets. We present the \textit{Multi-Hypothesis \textbf{P}ose \textbf{Syn}thesis \textbf{D}omain \textbf{A}daptation} (\textbf{PoSynDA}) framework to overcome this issue without extensive target domain annotation. Utilizing a diffusion-centric structure, PoSynDA simulates the 3D pose distribution in the target domain, filling the data diversity gap. By incorporating a multi-hypothesis network, it creates diverse pose hypotheses and aligns them with the target domain. Target-specific source augmentation obtains the target domain distribution data from the source domain by decoupling the scale and position parameters. The teacher-student paradigm and low-rank adaptation further refine the process. PoSynDA demonstrates competitive performance on benchmarks, such as Human3.6M, MPI-INF-3DHP, and 3DPW, even comparable with the target-trained MixSTE model~\cite{zhang2022mixste}. This work paves the way for the practical application of 3D human pose estimation. The code is available at https://github.com/hbing-l/PoSynDA.
Abstract:In the realm of facial analysis, accurate landmark detection is crucial for various applications, ranging from face recognition and expression analysis to animation. Conventional heatmap or coordinate regression-based techniques, however, often face challenges in terms of computational burden and quantization errors. To address these issues, we present the KeyPoint Positioning System (KeyPosS), a groundbreaking facial landmark detection framework that stands out from existing methods. For the first time, KeyPosS employs the True-range Multilateration algorithm, a technique originally used in GPS systems, to achieve rapid and precise facial landmark detection without relying on computationally intensive regression approaches. The framework utilizes a fully convolutional network to predict a distance map, which computes the distance between a Point of Interest (POI) and multiple anchor points. These anchor points are ingeniously harnessed to triangulate the POI's position through the True-range Multilateration algorithm. Notably, the plug-and-play nature of KeyPosS enables seamless integration into any decoding stage, ensuring a versatile and adaptable solution. We conducted a thorough evaluation of KeyPosS's performance by benchmarking it against state-of-the-art models on four different datasets. The results show that KeyPosS substantially outperforms leading methods in low-resolution settings while requiring a minimal time overhead. The code is available at https://github.com/zhiqic/KeyPosS.
Abstract:Orchestrating a high-quality data preparation program is essential for successful machine learning (ML), but it is known to be time and effort consuming. Despite the impressive capabilities of large language models like ChatGPT in generating programs by interacting with users through natural language prompts, there are still limitations. Specifically, a user must provide specific prompts to iteratively guide ChatGPT in improving data preparation programs, which requires a certain level of expertise in programming, the dataset used and the ML task. Moreover, once a program has been generated, it is non-trivial to revisit a previous version or make changes to the program without starting the process over again. In this paper, we present ChatPipe, a novel system designed to facilitate seamless interaction between users and ChatGPT. ChatPipe provides users with effective recommendation on next data preparation operations, and guides ChatGPT to generate program for the operations. Also, ChatPipe enables users to easily roll back to previous versions of the program, which facilitates more efficient experimentation and testing. We have developed a web application for ChatPipe and prepared several real-world ML tasks from Kaggle. These tasks can showcase the capabilities of ChatPipe and enable VLDB attendees to easily experiment with our novel features to rapidly orchestrate a high-quality data preparation program.
Abstract:Human pose estimation is a complicated structured data sequence modeling task. Most existing methods only consider the pair-wise interaction of human body joints in model learning. Unfortunately, this causes 3D pose estimation to fail in difficult cases such as $\textit{joints overlapping}$, and pose $\textit{fast-changing}$, as pair-wise relations cannot exploit fine-grained human body priors in pose estimation. To this end, we revamped the 3D pose estimation framework with a $\textit{High-order}$ $\textit{Directed}$ $\textit{Transformer}$ (HDFormer), which coherently exploits the high-order bones and joints relevances to boost the performance of pose estimation. Specifically, HDFormer adopts both self-attention and high-order attention schemes to build up a multi-order attention module to perform the information flow interaction including the first-order $"\textit{joint$\leftrightarrow$joint}"$, second-order $"\textit{bone$\leftrightarrow$joint}"$ as well as high-order $"\textit{hyperbone$\leftrightarrow$joint}"$ relationships (hyperbone is defined as a joint set), compensating the hard cases prediction in fast-changing and heavy occlusion scenarios. Moreover, modernized CNN techniques are applied to upgrade the transformer-based architecture to speed up the HDFormer, achieving a favorable trade-off between effectiveness and efficiency. We compare our model with other SOTA models on the datasets Human3.6M and MPI-INF-3DHP. The results demonstrate that the proposed HDFormer achieves superior performance with only $\textbf{1/10}$ parameters and much lower computational cost compared to the current SOTAs. Moreover, HDFormer can be applied to various types of real-world applications, enabling real-time and accurate 3D pose estimation. The source code is in https://github.com/hyer/HDFormer.