Abstract:Image restoration involves recovering a high-quality clean image from its degraded version, which is a fundamental task in computer vision. Recent progress in image restoration has demonstrated the effectiveness of learning models capable of addressing various degradations simultaneously, i.e., the All-in-One image restoration models. However, these existing methods typically utilize the same parameters facing images with different degradation types, which causes the model to be forced to trade off between degradation types, therefore impair the total performance. To solve this problem, we propose HAIR, a Hypernetworks-based plug-in-and-play method that dynamically generated parameters for the corresponding networks based on the contents of input images. HAIR consists of 2 main components: Classifier (Cl) and Hyper Selecting Net (HSN). To be more specific, the Classifier is a simple image classification network which is used to generate a Global Information Vector (GIV) that contains the degradation information of the input image; And the HSNs can be seen as a simple Fully-connected Neural Network that receive the GIV and output parameters for the corresponding modules. Extensive experiments shows that incorporating HAIR into the architectures can significantly improve the performance of different models on image restoration tasks at a low cost, \textbf{although HAIR only generate parameters and haven't change these models' logical structures at all.} With incorporating HAIR into the popular architecture Restormer, our method obtains superior or at least comparable performance to current state-of-the-art methods on a range of image restoration tasks. \href{https://github.com/toummHus/HAIR}{\textcolor{blue}{$\underline{\textbf{Code and pre-trained checkpoints are available here.}}$}}
Abstract:Traditional fluorescence staining is phototoxic to live cells, slow, and expensive; thus, the subcellular structure prediction (SSP) from transmitted light (TL) images is emerging as a label-free, faster, low-cost alternative. However, existing approaches utilize 3D networks for one-to-one voxel level dense prediction, which necessitates a frequent and time-consuming Z-axis imaging process. Moreover, 3D convolutions inevitably lead to significant computation and GPU memory overhead. Therefore, we propose an efficient framework, SparseSSP, predicting fluorescent intensities within the target voxel grid in an efficient paradigm instead of relying entirely on 3D topologies. In particular, SparseSSP makes two pivotal improvements to prior works. First, SparseSSP introduces a one-to-many voxel mapping paradigm, which permits the sparse TL slices to reconstruct the subcellular structure. Secondly, we propose a hybrid dimensions topology, which folds the Z-axis information into channel features, enabling the 2D network layers to tackle SSP under low computational cost. We conduct extensive experiments to validate the effectiveness and advantages of SparseSSP on diverse sparse imaging ratios, and our approach achieves a leading performance compared to pure 3D topologies. SparseSSP reduces imaging frequencies compared to previous dense-view SSP (i.e., the number of imaging is reduced up to 87.5% at most), which is significant in visualizing rapid biological dynamics on low-cost devices and samples.
Abstract:In industrial recommendation systems, there are several mini-apps designed to meet the diverse interests and needs of users. The sample space of them is merely a small subset of the entire space, making it challenging to train an efficient model. In recent years, there have been many excellent studies related to cross-domain recommendation aimed at mitigating the problem of data sparsity. However, few of them have simultaneously considered the adaptability of both sample and representation continual transfer setting to the target task. To overcome the above issue, we propose a Entire space Continual and Adaptive Transfer learning framework called ECAT which includes two core components: First, as for sample transfer, we propose a two-stage method that realizes a coarse-to-fine process. Specifically, we perform an initial selection through a graph-guided method, followed by a fine-grained selection using domain adaptation method. Second, we propose an adaptive knowledge distillation method for continually transferring the representations from a model that is well-trained on the entire space dataset. ECAT enables full utilization of the entire space samples and representations under the supervision of the target task, while avoiding negative migration. Comprehensive experiments on real-world industrial datasets from Taobao show that ECAT advances state-of-the-art performance on offline metrics, and brings +13.6% CVR and +8.6% orders for Baiyibutie, a famous mini-app of Taobao.
Abstract:Recently, the field of few-shot detection within remote sensing imagery has witnessed significant advancements. Despite these progresses, the capacity for continuous conceptual learning still poses a significant challenge to existing methodologies. In this paper, we explore the intricate task of incremental few-shot object detection in remote sensing images. We introduce a pioneering fine-tuningbased technique, termed InfRS, designed to facilitate the incremental learning of novel classes using a restricted set of examples, while concurrently preserving the performance on established base classes without the need to revisit previous datasets. Specifically, we pretrain the model using abundant data from base classes and then generate a set of class-wise prototypes that represent the intrinsic characteristics of the data. In the incremental learning stage, we introduce a Hybrid Prototypical Contrastive (HPC) encoding module for learning discriminative representations. Furthermore, we develop a prototypical calibration strategy based on the Wasserstein distance to mitigate the catastrophic forgetting problem. Comprehensive evaluations on the NWPU VHR-10 and DIOR datasets demonstrate that our model can effectively solve the iFSOD problem in remote sensing images. Code will be released.
Abstract:Few-shot object detection (FSOD) has garnered significant research attention in the field of remote sensing due to its ability to reduce the dependency on large amounts of annotated data. However, two challenges persist in this area: (1) axis-aligned proposals, which can result in misalignment for arbitrarily oriented objects, and (2) the scarcity of annotated data still limits the performance for unseen object categories. To address these issues, we propose a novel FSOD method for remote sensing images called Few-shot Oriented object detection with Memorable Contrastive learning (FOMC). Specifically, we employ oriented bounding boxes instead of traditional horizontal bounding boxes to learn a better feature representation for arbitrary-oriented aerial objects, leading to enhanced detection performance. To the best of our knowledge, we are the first to address oriented object detection in the few-shot setting for remote sensing images. To address the challenging issue of object misclassification, we introduce a supervised contrastive learning module with a dynamically updated memory bank. This module enables the use of large batches of negative samples and enhances the model's capability to learn discriminative features for unseen classes. We conduct comprehensive experiments on the DOTA and HRSC2016 datasets, and our model achieves state-of-the-art performance on the few-shot oriented object detection task. Code and pretrained models will be released.
Abstract:Patient portal allows discharged patients to access their personalized discharge instructions in electronic health records (EHRs). However, many patients have difficulty understanding or memorizing their discharge instructions. In this paper, we present PaniniQA, a patient-centric interactive question answering system designed to help patients understand their discharge instructions. PaniniQA first identifies important clinical content from patients' discharge instructions and then formulates patient-specific educational questions. In addition, PaniniQA is also equipped with answer verification functionality to provide timely feedback to correct patients' misunderstandings. Our comprehensive automatic and human evaluation results demonstrate our PaniniQA is capable of improving patients' mastery of their medical instructions through effective interactions
Abstract:There exists a correlation between geospatial activity temporal patterns and type of land use. A novel self-supervised approach is proposed to stratify landscape based on mobility activity time series. First, the time series signal is transformed to the frequency domain and then compressed into task-agnostic temporal embeddings by a contractive autoencoder, which preserves cyclic temporal patterns observed in time series. The pixel-wise embeddings are converted to image-like channels that can be used for task-based, multimodal modeling of downstream geospatial tasks using deep semantic segmentation. Experiments show that temporal embeddings are semantically meaningful representations of time series data and are effective across different tasks such as classifying residential area and commercial areas.
Abstract:Graph convolutional network (GCN) has been successfully applied to capture global non-consecutive and long-distance semantic information for text classification. However, while GCN-based methods have shown promising results in offline evaluations, they commonly follow a seen-token-seen-document paradigm by constructing a fixed document-token graph and cannot make inferences on new documents. It is a challenge to deploy them in online systems to infer steaming text data. In this work, we present a continual GCN model (ContGCN) to generalize inferences from observed documents to unobserved documents. Concretely, we propose a new all-token-any-document paradigm to dynamically update the document-token graph in every batch during both the training and testing phases of an online system. Moreover, we design an occurrence memory module and a self-supervised contrastive learning objective to update ContGCN in a label-free manner. A 3-month A/B test on Huawei public opinion analysis system shows ContGCN achieves 8.86% performance gain compared with state-of-the-art methods. Offline experiments on five public datasets also show ContGCN can improve inference quality. The source code will be released at https://github.com/Jyonn/ContGCN.
Abstract:Pretrained language models (PLMs) have motivated research on what kinds of knowledge these models learn. Fill-in-the-blanks problem (e.g., cloze tests) is a natural approach for gauging such knowledge. BioLAMA generates prompts for biomedical factual knowledge triples and uses the Top-k accuracy metric to evaluate different PLMs' knowledge. However, existing research has shown that such prompt-based knowledge probing methods can only probe a lower bound of knowledge. Many factors like prompt-based probing biases make the LAMA benchmark unreliable and unstable. This problem is more prominent in BioLAMA. The severe long-tailed distribution in vocabulary and large-N-M relation make the performance gap between LAMA and BioLAMA remain notable. To address these, we introduce context variance into the prompt generation and propose a new rank-change-based evaluation metric. Different from the previous known-unknown evaluation criteria, we propose the concept of "Misunderstand" in LAMA for the first time. Through experiments on 12 PLMs, our context variance prompts and Understand-Confuse-Misunderstand (UCM) metric makes BioLAMA more friendly to large-N-M relations and rare relations. We also conducted a set of control experiments to disentangle "understand" from just "read and copy".
Abstract:E-commerce platforms provide entrances for customers to enter mini-apps that can meet their specific shopping requirements. Trigger items displayed on entrance icons can attract more entering. However, conventional Click-Through-Rate (CTR) prediction models, which ignore user instant interest in trigger item, fail to be applied to the new recommendation scenario dubbed Trigger-Induced Recommendation in Mini-Apps (TIRA). Moreover, due to the high stickiness of customers to mini-apps, we argue that existing trigger-based methods that over-emphasize the importance of trigger items, are undesired for TIRA, since a large portion of customer entries are because of their routine shopping habits instead of triggers. We identify that the key to TIRA is to extract customers' personalized entering intention and weigh the impact of triggers based on this intention. To achieve this goal, we convert CTR prediction for TIRA into a separate estimation form, and present Deep Intention-Aware Network (DIAN) with three key elements: 1) Intent Net that estimates user's entering intention, i.e., whether he/she is affected by the trigger or by the habits; 2) Trigger-Aware Net and 3) Trigger-Free Net that estimate CTRs given user's intention is to the trigger-item and the mini-app respectively. Following a joint learning way, DIAN can both accurately predict user intention and dynamically balance the results of trigger-free and trigger-based recommendations based on the estimated intention. Experiments show that DIAN advances state-of-the-art performance in a large real-world dataset, and brings a 9.39% lift of online Item Page View and 4.74% CTR for Juhuasuan, a famous mini-app of Taobao.