Abstract:Despite previous works typically targeting isolated degradation types, recent research has increasingly focused on addressing composite degradations which involve a complex interplay of multiple different isolated degradations. Recognizing the challenges posed by the exponential number of possible degradation combinations, we propose Universal Image Restoration (UIR), a new task setting that requires models to be trained on a set of degradation bases and then remove any degradation that these bases can potentially compose in a zero-shot manner. Inspired by the Chain-of-Thought which prompts LLMs to address problems step-by-step, we propose the Chain-of-Restoration (CoR), which instructs models to step-by-step remove unknown composite degradations. By integrating a simple Degradation Discriminator into pre-trained multi-task models, CoR facilitates the process where models remove one degradation basis per step, continuing this process until the image is fully restored from the unknown composite degradation. Extensive experiments show that CoR significantly improves model performance in removing composite degradations, achieving results comparable to or surpassing those of State-of-The-Art (SoTA) methods trained on all degradations. The code will be released at https://github.com/toummHus/Chain-of-Restoration.
Abstract:The emergence of text-to-image models has recently sparked significant interest, but the attendant is a looming shadow of potential infringement by violating the user terms. Specifically, an adversary may exploit data created by a commercial model to train their own without proper authorization. To address such risk, it is crucial to investigate the attribution of a suspicious model's training data by determining whether its training data originates, wholly or partially, from a specific source model. To trace the generated data, existing methods require applying extra watermarks during either the training or inference phases of the source model. However, these methods are impractical for pre-trained models that have been released, especially when model owners lack security expertise. To tackle this challenge, we propose an injection-free training data attribution method for text-to-image models. It can identify whether a suspicious model's training data stems from a source model, without additional modifications on the source model. The crux of our method lies in the inherent memorization characteristic of text-to-image models. Our core insight is that the memorization of the training dataset is passed down through the data generated by the source model to the model trained on that data, making the source model and the infringing model exhibit consistent behaviors on specific samples. Therefore, our approach involves developing algorithms to uncover these distinct samples and using them as inherent watermarks to verify if a suspicious model originates from the source model. Our experiments demonstrate that our method achieves an accuracy of over 80\% in identifying the source of a suspicious model's training data, without interfering the original training or generation process of the source model.
Abstract:Image restoration involves recovering a high-quality clean image from its degraded version, which is a fundamental task in computer vision. Recent progress in image restoration has demonstrated the effectiveness of learning models capable of addressing various degradations simultaneously, i.e., the All-in-One image restoration models. However, these existing methods typically utilize the same parameters facing images with different degradation types, which causes the model to be forced to trade off between degradation types, therefore impair the total performance. To solve this problem, we propose HAIR, a Hypernetworks-based plug-in-and-play method that dynamically generated parameters for the corresponding networks based on the contents of input images. HAIR consists of 2 main components: Classifier (Cl) and Hyper Selecting Net (HSN). To be more specific, the Classifier is a simple image classification network which is used to generate a Global Information Vector (GIV) that contains the degradation information of the input image; And the HSNs can be seen as a simple Fully-connected Neural Network that receive the GIV and output parameters for the corresponding modules. Extensive experiments shows that incorporating HAIR into the architectures can significantly improve the performance of different models on image restoration tasks at a low cost, \textbf{although HAIR only generate parameters and haven't change these models' logical structures at all.} With incorporating HAIR into the popular architecture Restormer, our method obtains superior or at least comparable performance to current state-of-the-art methods on a range of image restoration tasks. \href{https://github.com/toummHus/HAIR}{\textcolor{blue}{$\underline{\textbf{Code and pre-trained checkpoints are available here.}}$}}
Abstract:This paper explores multi-scenario optimization on large platforms using multi-agent reinforcement learning (MARL). We address this by treating scenarios like search, recommendation, and advertising as a cooperative, partially observable multi-agent decision problem. We introduce the Multi-Agent Recurrent Deterministic Policy Gradient (MARDPG) algorithm, which aligns different scenarios under a shared objective and allows for strategy communication to boost overall performance. Our results show marked improvements in metrics such as click-through rate (CTR), conversion rate, and total sales, confirming our method's efficacy in practical settings.
Abstract:With the rise of various online and mobile payment systems, transaction fraud has become a significant threat to financial security. This study explores the application of advanced machine learning models, specifically XGBoost and LightGBM, for developing a more accurate and robust Payment Security Protection Model.To enhance data reliability, we meticulously processed the data sources and used SMOTE (Synthetic Minority Over-sampling Technique) to address class imbalance and improve data representation. By selecting highly correlated features, we aimed to strengthen the training process and boost model performance.We conducted thorough performance evaluations of our proposed models, comparing them against traditional methods including Random Forest, Neural Network, and Logistic Regression. Key metrics such as Precision, Recall, and F1 Score were used to rigorously assess their effectiveness.Our detailed analyses and comparisons reveal that the combination of SMOTE with XGBoost and LightGBM offers a highly efficient and powerful mechanism for payment security protection. The results show that these models not only outperform traditional approaches but also hold significant promise for advancing the field of transaction fraud prevention.
Abstract:With the proliferation of various online and mobile payment systems, credit card fraud has emerged as a significant threat to financial security. This study focuses on innovative applications of the latest Transformer models for more robust and precise fraud detection. To ensure the reliability of the data, we meticulously processed the data sources, balancing the dataset to address the issue of data sparsity significantly. We also selected highly correlated vectors to strengthen the training process.To guarantee the reliability and practicality of the new Transformer model, we conducted performance comparisons with several widely adopted models, including Support Vector Machine (SVM), Random Forest, Neural Network, and Logistic Regression. We rigorously compared these models using metrics such as Precision, Recall, and F1 Score. Through these detailed analyses and comparisons, we present to the readers a highly efficient and powerful anti-fraud mechanism with promising prospects. The results demonstrate that the Transformer model not only excels in traditional applications but also shows great potential in niche areas like fraud detection, offering a substantial advancement in the field.
Abstract:This research aims to explore the application of deep learning in autonomous driving computer vision technology and its impact on improving system performance. By using advanced technologies such as convolutional neural networks (CNN), multi-task joint learning methods, and deep reinforcement learning, this article analyzes in detail the application of deep learning in image recognition, real-time target tracking and classification, environment perception and decision support, and path planning and navigation. Application process in key areas. Research results show that the proposed system has an accuracy of over 98% in image recognition, target tracking and classification, and also demonstrates efficient performance and practicality in environmental perception and decision support, path planning and navigation. The conclusion points out that deep learning technology can significantly improve the accuracy and real-time response capabilities of autonomous driving systems. Although there are still challenges in environmental perception and decision support, with the advancement of technology, it is expected to achieve wider applications and greater capabilities in the future. potential.
Abstract:This paper explores the integration of strategic optimization methods in search advertising, focusing on ad ranking and bidding mechanisms within E-commerce platforms. By employing a combination of reinforcement learning and evolutionary strategies, we propose a dynamic model that adjusts to varying user interactions and optimizes the balance between advertiser cost, user relevance, and platform revenue. Our results suggest significant improvements in ad placement accuracy and cost efficiency, demonstrating the model's applicability in real-world scenarios.
Abstract:We present results from a large-scale experiment on pretraining encoders with non-embedding parameter counts ranging from 700M to 9.3B, their subsequent distillation into smaller models ranging from 17M-170M parameters, and their application to the Natural Language Understanding (NLU) component of a virtual assistant system. Though we train using 70% spoken-form data, our teacher models perform comparably to XLM-R and mT5 when evaluated on the written-form Cross-lingual Natural Language Inference (XNLI) corpus. We perform a second stage of pretraining on our teacher models using in-domain data from our system, improving error rates by 3.86% relative for intent classification and 7.01% relative for slot filling. We find that even a 170M-parameter model distilled from our Stage 2 teacher model has 2.88% better intent classification and 7.69% better slot filling error rates when compared to the 2.3B-parameter teacher trained only on public data (Stage 1), emphasizing the importance of in-domain data for pretraining. When evaluated offline using labeled NLU data, our 17M-parameter Stage 2 distilled model outperforms both XLM-R Base (85M params) and DistillBERT (42M params) by 4.23% to 6.14%, respectively. Finally, we present results from a full virtual assistant experimentation platform, where we find that models trained using our pretraining and distillation pipeline outperform models distilled from 85M-parameter teachers by 3.74%-4.91% on an automatic measurement of full-system user dissatisfaction.
Abstract:Understanding human language often necessitates understanding entities and their place in a taxonomy of knowledge -- their types. Previous methods to learn entity types rely on training classifiers on datasets with coarse, noisy, and incomplete labels. We introduce a method to instill fine-grained type knowledge in language models with text-to-text pre-training on type-centric questions leveraging knowledge base documents and knowledge graphs. We create the WikiWiki dataset: entities and passages from 10M Wikipedia articles linked to the Wikidata knowledge graph with 41K types. Models trained on WikiWiki achieve state-of-the-art performance in zero-shot dialog state tracking benchmarks, accurately infer entity types in Wikipedia articles, and can discover new types deemed useful by human judges.