Abstract:This paper explores multi-scenario optimization on large platforms using multi-agent reinforcement learning (MARL). We address this by treating scenarios like search, recommendation, and advertising as a cooperative, partially observable multi-agent decision problem. We introduce the Multi-Agent Recurrent Deterministic Policy Gradient (MARDPG) algorithm, which aligns different scenarios under a shared objective and allows for strategy communication to boost overall performance. Our results show marked improvements in metrics such as click-through rate (CTR), conversion rate, and total sales, confirming our method's efficacy in practical settings.
Abstract:This paper explores the integration of strategic optimization methods in search advertising, focusing on ad ranking and bidding mechanisms within E-commerce platforms. By employing a combination of reinforcement learning and evolutionary strategies, we propose a dynamic model that adjusts to varying user interactions and optimizes the balance between advertiser cost, user relevance, and platform revenue. Our results suggest significant improvements in ad placement accuracy and cost efficiency, demonstrating the model's applicability in real-world scenarios.