Abstract:Self-supervised heterogeneous graph learning (SHGL) has shown promising potential in diverse scenarios. However, while existing SHGL methods share a similar essential with clustering approaches, they encounter two significant limitations: (i) noise in graph structures is often introduced during the message-passing process to weaken node representations, and (ii) cluster-level information may be inadequately captured and leveraged, diminishing the performance in downstream tasks. In this paper, we address these limitations by theoretically revisiting SHGL from the spectral clustering perspective and introducing a novel framework enhanced by rank and dual consistency constraints. Specifically, our framework incorporates a rank-constrained spectral clustering method that refines the affinity matrix to exclude noise effectively. Additionally, we integrate node-level and cluster-level consistency constraints that concurrently capture invariant and clustering information to facilitate learning in downstream tasks. We theoretically demonstrate that the learned representations are divided into distinct partitions based on the number of classes and exhibit enhanced generalization ability across tasks. Experimental results affirm the superiority of our method, showcasing remarkable improvements in several downstream tasks compared to existing methods.
Abstract:The "pre-train, prompt-tuning'' paradigm has demonstrated impressive performance for tuning pre-trained heterogeneous graph neural networks (HGNNs) by mitigating the gap between pre-trained models and downstream tasks. However, most prompt-tuning-based works may face at least two limitations: (i) the model may be insufficient to fit the graph structures well as they are generally ignored in the prompt-tuning stage, increasing the training error to decrease the generalization ability; and (ii) the model may suffer from the limited labeled data during the prompt-tuning stage, leading to a large generalization gap between the training error and the test error to further affect the model generalization. To alleviate the above limitations, we first derive the generalization error bound for existing prompt-tuning-based methods, and then propose a unified framework that combines two new adapters with potential labeled data extension to improve the generalization of pre-trained HGNN models. Specifically, we design dual structure-aware adapters to adaptively fit task-related homogeneous and heterogeneous structural information. We further design a label-propagated contrastive loss and two self-supervised losses to optimize dual adapters and incorporate unlabeled nodes as potential labeled data. Theoretical analysis indicates that the proposed method achieves a lower generalization error bound than existing methods, thus obtaining superior generalization ability. Comprehensive experiments demonstrate the effectiveness and generalization of the proposed method on different downstream tasks.
Abstract:Compared with Large Language Models (LLMs), Large Vision-Language Models (LVLMs) can also accept images as input, thus showcasing more interesting emergent capabilities and demonstrating impressive performance on various vision-language tasks. Motivated by text prompting in LLMs, visual prompting has been explored to enhance LVLMs' capabilities of perceiving visual information. However, previous visual prompting techniques solely process visual inputs without considering text queries, limiting the models' ability to follow text instructions to complete tasks. To fill this gap, in this work, we propose a new prompting technique named Attention Prompting on Image, which just simply overlays a text-query-guided attention heatmap on the original input image and effectively enhances LVLM on various tasks. Specifically, we generate an attention heatmap for the input image dependent on the text query with an auxiliary model like CLIP. Then the heatmap simply multiplies the pixel values of the original image to obtain the actual input image for the LVLM. Extensive experiments on various vison-language benchmarks verify the effectiveness of our technique. For example, Attention Prompting on Image improves LLaVA-1.5 by 3.8% and 2.9% on MM-Vet and LLaVA-Wild benchmarks, respectively.
Abstract:This paper does not introduce a novel method. Instead, it offers a fairer and more comprehensive comparison of KAN and MLP models across various tasks, including machine learning, computer vision, audio processing, natural language processing, and symbolic formula representation. Specifically, we control the number of parameters and FLOPs to compare the performance of KAN and MLP. Our main observation is that, except for symbolic formula representation tasks, MLP generally outperforms KAN. We also conduct ablation studies on KAN and find that its advantage in symbolic formula representation mainly stems from its B-spline activation function. When B-spline is applied to MLP, performance in symbolic formula representation significantly improves, surpassing or matching that of KAN. However, in other tasks where MLP already excels over KAN, B-spline does not substantially enhance MLP's performance. Furthermore, we find that KAN's forgetting issue is more severe than that of MLP in a standard class-incremental continual learning setting, which differs from the findings reported in the KAN paper. We hope these results provide insights for future research on KAN and other MLP alternatives. Project link: https://github.com/yu-rp/KANbeFair
Abstract:This paradigm encapsulates knowledge from various models into a solitary prompt without altering the original models or requiring access to the training data, which enables us to achieve efficient and convenient knowledge transfer in more realistic scenarios. From a practicality standpoint, this paradigm not only for the first time proves the effectiveness of Visual Prompt in data inaccessible contexts, but also solves the problems of low model reusability and high storage resource consumption faced by traditional Data-Free Knowledge Transfer, which means that we can realize the parallel knowledge transfer of multiple models without modifying any source model. Extensive experiments across various datasets and models demonstrate the efficacy of the proposed KiOP knowledge transfer paradigm. Without access to real training data and with rigorous storage capacity constraints, it is also capable of yielding considerable outcomes when dealing with cross-model backbone setups and handling parallel knowledge transfer processing requests with multiple (more than 2) models.
Abstract:Given a well-behaved neural network, is possible to identify its parent, based on which it was tuned? In this paper, we introduce a novel task known as neural lineage detection, aiming at discovering lineage relationships between parent and child models. Specifically, from a set of parent models, neural lineage detection predicts which parent model a child model has been fine-tuned from. We propose two approaches to address this task. (1) For practical convenience, we introduce a learning-free approach, which integrates an approximation of the finetuning process into the neural network representation similarity metrics, leading to a similarity-based lineage detection scheme. (2) For the pursuit of accuracy, we introduce a learning-based lineage detector comprising encoders and a transformer detector. Through experimentation, we have validated that our proposed learning-free and learning-based methods outperform the baseline in various learning settings and are adaptable to a variety of visual models. Moreover, they also exhibit the ability to trace cross-generational lineage, identifying not only parent models but also their ancestors.
Abstract:Graph Neural Networks (GNNs) have become the preferred tool to process graph data, with their efficacy being boosted through graph data augmentation techniques. Despite the evolution of augmentation methods, issues like graph property distortions and restricted structural changes persist. This leads to the question: Is it possible to develop more property-conserving and structure-sensitive augmentation methods? Through a spectral lens, we investigate the interplay between graph properties, their augmentation, and their spectral behavior, and found that keeping the low-frequency eigenvalues unchanged can preserve the critical properties at a large scale when generating augmented graphs. These observations inform our introduction of the Dual-Prism (DP) augmentation method, comprising DP-Noise and DP-Mask, which adeptly retains essential graph properties while diversifying augmented graphs. Extensive experiments validate the efficiency of our approach, providing a new and promising direction for graph data augmentation.
Abstract:In this paper, we make a bold attempt toward an ambitious task: given a pre-trained classifier, we aim to reconstruct an image generator, without relying on any data samples. From a black-box perspective, this challenge seems intractable, since it inevitably involves identifying the inverse function for a classifier, which is, by nature, an information extraction process. As such, we resort to leveraging the knowledge encapsulated within the parameters of the neural network. Grounded on the theory of Maximum-Margin Bias of gradient descent, we propose a novel learning paradigm, in which the generator is trained to ensure that the convergence conditions of the network parameters are satisfied over the generated distribution of the samples. Empirical validation from various image generation tasks substantiates the efficacy of our strategy.
Abstract:Data in the real-world classification problems are always imbalanced or long-tailed, wherein the majority classes have the most of the samples that dominate the model training. In such setting, the naive model tends to have poor performance on the minority classes. Previously, a variety of loss modifications have been proposed to address the long-tailed leaning problem, while these methods either treat the samples in the same class indiscriminatingly or lack a theoretical guarantee. In this paper, we propose two novel approaches based on CVaR (Conditional Value at Risk) to improve the performance of long-tailed learning with a solid theoretical ground. Specifically, we firstly introduce a Label-Aware Bounded CVaR (LAB-CVaR) loss to overcome the pessimistic result of the original CVaR, and further design the optimal weight bounds for LAB-CVaR theoretically. Based on LAB-CVaR, we additionally propose a LAB-CVaR with logit adjustment (LAB-CVaR-logit) loss to stabilize the optimization process, where we also offer the theoretical support. Extensive experiments on real-world datasets with long-tailed label distributions verify the superiority of our proposed methods.
Abstract:Machine learning society has witnessed the emergence of a myriad of Out-of-Distribution (OoD) algorithms, which address the distribution shift between the training and the testing distribution by searching for a unified predictor or invariant feature representation. However, the task of directly mitigating the distribution shift in the unseen testing set is rarely investigated, due to the unavailability of the testing distribution during the training phase and thus the impossibility of training a distribution translator mapping between the training and testing distribution. In this paper, we explore how to bypass the requirement of testing distribution for distribution translator training and make the distribution translation useful for OoD prediction. We propose a portable Distribution Shift Inversion algorithm, in which, before being fed into the prediction model, the OoD testing samples are first linearly combined with additional Gaussian noise and then transferred back towards the training distribution using a diffusion model trained only on the source distribution. Theoretical analysis reveals the feasibility of our method. Experimental results, on both multiple-domain generalization datasets and single-domain generalization datasets, show that our method provides a general performance gain when plugged into a wide range of commonly used OoD algorithms.