Vision Language Models (VLMs) have demonstrated impressive inference capabilities, but remain vulnerable to jailbreak attacks that can induce harmful or unethical responses. Existing defence methods are predominantly white-box approaches that require access to model parameters and extensive modifications, making them costly and impractical for many real-world scenarios. Although some black-box defences have been proposed, they often impose input constraints or require multiple queries, limiting their effectiveness in safety-critical tasks such as autonomous driving. To address these challenges, we propose a novel black-box defence framework called \textbf{T}extual \textbf{A}nchoring for \textbf{I}mmunizing \textbf{J}ailbreak \textbf{I}mages (\textbf{TAIJI}). TAIJI leverages key phrase-based textual anchoring to enhance the model's ability to assess and mitigate the harmful content embedded within both visual and textual prompts. Unlike existing methods, TAIJI operates effectively with a single query during inference, while preserving the VLM's performance on benign tasks. Extensive experiments demonstrate that TAIJI significantly enhances the safety and reliability of VLMs, providing a practical and efficient solution for real-world deployment.