University Of Houston
Abstract:Logs are critical resources that record events, activities, or messages produced by software applications, operating systems, servers, and network devices. However, consolidating the heterogeneous logs and cross-referencing them is challenging and complicated. Manually analyzing the log data is time-consuming and prone to errors. LogBabylon is a centralized log data consolidating solution that leverages Large Language Models (LLMs) integrated with Retrieval-Augmented Generation (RAG) technology. LogBabylon interprets the log data in a human-readable way and adds insight analysis of the system performance and anomaly alerts. It provides a paramount view of the system landscape, enabling proactive management and rapid incident response. LogBabylon consolidates diverse log sources and enhances the extracted information's accuracy and relevancy. This facilitates a deeper understanding of log data, supporting more effective decision-making and operational efficiency. Furthermore, LogBabylon streamlines the log analysis process, significantly reducing the time and effort required to interpret complex datasets. Its capabilities extend to generating context-aware insights, offering an invaluable tool for continuous monitoring, performance optimization, and security assurance in dynamic computing environments.
Abstract:Unit testing is crucial in software engineering for ensuring quality. However, it's not widely used in parallel and high-performance computing software, particularly scientific applications, due to their smaller, diverse user base and complex logic. These factors make unit testing challenging and expensive, as it requires specialized knowledge and existing automated tools are often ineffective. To address this, we propose an automated method for generating unit tests for such software, considering their unique features like complex logic and parallel processing. Recently, large language models (LLMs) have shown promise in coding and testing. We explored the capabilities of Davinci (text-davinci-002) and ChatGPT (gpt-3.5-turbo) in creating unit tests for C++ parallel programs. Our results show that LLMs can generate mostly correct and comprehensive unit tests, although they have some limitations, such as repetitive assertions and blank test cases.
Abstract:Artificial General Intelligence falls short when communicating role specific nuances to other systems. This is more pronounced when building autonomous LLM agents capable and designed to communicate with each other for real world problem solving. Humans can communicate context and domain specific nuances along with knowledge, and that has led to refinement of skills. In this work we propose and evaluate a novel method that leads to knowledge distillation among LLM agents leading to realtime human role play preserving unique contexts without relying on any stored data or pretraining. We also evaluate how our system performs better in simulated real world tasks compared to state of the art.
Abstract:The advent of large language models (LLMs) has marked a significant milestone in the realm of artificial intelligence, with their capabilities often matching or surpassing human expertise in various domains. Among these achievements, their adeptness in translation tasks stands out, closely mimicking the intricate and preliminary processes undertaken by human translators to ensure the fidelity and quality of the translated content. Despite the advancements in utilizing LLMs for translating programming code across different languages, the domain of smart contract translation, particularly into languages not previously encountered by the LLM, remains largely unexplored. In our research, we present a pioneering approach, SolMover, which harnesses the synergy of two distinct LLMs within a unified framework. This framework is designed to grasp coding principles and apply this understanding to the translation of code into an unfamiliar language. Our study delves into the capacity of LLMs to mimic human learning processes, offering an in-depth evaluation of our methodology for converting smart contracts written in Solidity to Move, a language with limited resources. The framework employs one LLM to decipher coding conventions for the new language, creating a blueprint for the second LLM, which, lacking planning abilities, possesses coding expertise. The empirical evidence from our experiments suggests that SolMover substantially enhances performance compared to gpt-3.5-turbo-1106, and achieves superior results over competitors such as Palm2 and Mixtral-8x7B-Instruct. Additionally, our analysis highlights the efficacy of our bug mitigation strategy in elevating code quality across all models, even outside the SolMover framework.
Abstract:The introduction of large language models (LLMs) like ChatGPT and Google Palm2 for smart contract generation seems to be the first well-established instance of an AI pair programmer. LLMs have access to a large number of open-source smart contracts, enabling them to utilize more extensive code in Solidity than other code generation tools. Although the initial and informal assessments of LLMs for smart contract generation are promising, a systematic evaluation is needed to explore the limits and benefits of these models. The main objective of this study is to assess the quality of generated code provided by LLMs for smart contracts. We also aim to evaluate the impact of the quality and variety of input parameters fed to LLMs. To achieve this aim, we created an experimental setup for evaluating the generated code in terms of validity, correctness, and efficiency. Our study finds crucial evidence of security bugs getting introduced in the generated smart contracts as well as the overall quality and correctness of the code getting impacted. However, we also identified the areas where it can be improved. The paper also proposes several potential research directions to improve the process, quality and safety of generated smart contract codes.
Abstract:Since the beginning of the vaccination trial, social media has been flooded with anti-vaccination comments and conspiracy beliefs. As the day passes, the number of COVID- 19 cases increases, and online platforms and a few news portals entertain sharing different conspiracy theories. The most popular conspiracy belief was the link between the 5G network spreading COVID-19 and the Chinese government spreading the virus as a bioweapon, which initially created racial hatred. Although some disbelief has less impact on society, others create massive destruction. For example, the 5G conspiracy led to the burn of the 5G Tower, and belief in the Chinese bioweapon story promoted an attack on the Asian-Americans. Another popular conspiracy belief was that Bill Gates spread this Coronavirus disease (COVID-19) by launching a mass vaccination program to track everyone. This Conspiracy belief creates distrust issues among laypeople and creates vaccine hesitancy. This study aims to discover the conspiracy theory against the vaccine on social platforms. We performed a sentiment analysis on the 598 unique sample comments related to COVID-19 vaccines. We used two different models, BERT and Perspective API, to find out the sentiment and toxicity of the sentence toward the COVID-19 vaccine.
Abstract:Performing neural network inference on encrypted data without decryption is one popular method to enable privacy-preserving neural networks (PNet) as a service. Compared with regular neural networks deployed for machine-learning-as-a-service, PNet requires additional encoding, e.g., quantized-precision numbers, and polynomial activation. Encrypted input also introduces novel challenges such as adversarial robustness and security. To the best of our knowledge, we are the first to study questions including (i) Whether PNet is more robust against adversarial inputs than regular neural networks? (ii) How to design a robust PNet given the encrypted input without decryption? We propose PNet-Attack to generate black-box adversarial examples that can successfully attack PNet in both target and untarget manners. The attack results show that PNet robustness against adversarial inputs needs to be improved. This is not a trivial task because the PNet model owner does not have access to the plaintext of the input values, which prevents the application of existing detection and defense methods such as input tuning, model normalization, and adversarial training. To tackle this challenge, we propose a new fast and accurate noise insertion method, called RPNet, to design Robust and Private Neural Networks. Our comprehensive experiments show that PNet-Attack reduces at least $2.5\times$ queries than prior works. We theoretically analyze our RPNet methods and demonstrate that RPNet can decrease $\sim 91.88\%$ attack success rate.
Abstract:Recent successful adversarial attacks on face recognition show that, despite the remarkable progress of face recognition models, they are still far behind the human intelligence for perception and recognition. It reveals the vulnerability of deep convolutional neural networks (CNNs) as state-of-the-art building block for face recognition models against adversarial examples, which can cause certain consequences for secure systems. Gradient-based adversarial attacks are widely studied before and proved to be successful against face recognition models. However, finding the optimized perturbation per each face needs to submitting the significant number of queries to the target model. In this paper, we propose recursive adversarial attack on face recognition using automatic face warping which needs extremely limited number of queries to fool the target model. Instead of a random face warping procedure, the warping functions are applied on specific detected regions of face like eyebrows, nose, lips, etc. We evaluate the robustness of proposed method in the decision-based black-box attack setting, where the attackers have no access to the model parameters and gradients, but hard-label predictions and confidence scores are provided by the target model.
Abstract:With the high prevalence of offensive language against minorities in social media, counter-hate speeches (CHS) generation is considered an automatic way of tackling this challenge. The CHS is supposed to appear as a third voice to educate people and keep the social [red lines bold] without limiting the principles of freedom of speech. In this paper, we review the most important research in the past and present with a main focus on methodologies, collected datasets and statistical analysis CHS's impact on social media. The CHS generation is based on the optimistic assumption that any attempt to intervene the hate speech in social media can play a positive role in this context. Beyond that, previous works ignored the investigation of the sequence of comments before and after the CHS. However, the positive impact is not guaranteed, as shown in some previous works. To the best of our knowledge, no attempt has been made to survey the related work to compare the past research in terms of CHS's impact on social media. We take the first step in this direction by providing a comprehensive review on related works and categorizing them based on different factors including impact, methodology, data source, etc.
Abstract:With the rise of voice chat rooms, a gigantic resource of data can be exposed to the research community for natural language processing tasks. Moderators in voice chat rooms actively monitor the discussions and remove the participants with offensive language. However, it makes the hate speech detection even more difficult since some participants try to find creative ways to articulate hate speech. This makes the hate speech detection challenging in new social media like Clubhouse. To the best of our knowledge all the hate speech datasets have been collected from text resources like Twitter. In this paper, we take the first step to collect a significant dataset from Clubhouse as the rising star in social media industry. We analyze the collected instances from statistical point of view using the Google Perspective Scores. Our experiments show that, the Perspective Scores can outperform Bag of Words and Word2Vec as high level text features.