Abstract:Logs are critical resources that record events, activities, or messages produced by software applications, operating systems, servers, and network devices. However, consolidating the heterogeneous logs and cross-referencing them is challenging and complicated. Manually analyzing the log data is time-consuming and prone to errors. LogBabylon is a centralized log data consolidating solution that leverages Large Language Models (LLMs) integrated with Retrieval-Augmented Generation (RAG) technology. LogBabylon interprets the log data in a human-readable way and adds insight analysis of the system performance and anomaly alerts. It provides a paramount view of the system landscape, enabling proactive management and rapid incident response. LogBabylon consolidates diverse log sources and enhances the extracted information's accuracy and relevancy. This facilitates a deeper understanding of log data, supporting more effective decision-making and operational efficiency. Furthermore, LogBabylon streamlines the log analysis process, significantly reducing the time and effort required to interpret complex datasets. Its capabilities extend to generating context-aware insights, offering an invaluable tool for continuous monitoring, performance optimization, and security assurance in dynamic computing environments.
Abstract:This study explores the idea of AI Personality or AInality suggesting that Large Language Models (LLMs) exhibit patterns similar to human personalities. Assuming that LLMs share these patterns with humans, we investigate using human-centered psychometric tests such as the Myers-Briggs Type Indicator (MBTI), Big Five Inventory (BFI), and Short Dark Triad (SD3) to identify and confirm LLM personality types. By introducing role-play prompts, we demonstrate the adaptability of LLMs, showing their ability to switch dynamically between different personality types. Using projective tests, such as the Washington University Sentence Completion Test (WUSCT), we uncover hidden aspects of LLM personalities that are not easily accessible through direct questioning. Projective tests allowed for a deep exploration of LLMs cognitive processes and thought patterns and gave us a multidimensional view of AInality. Our machine learning analysis revealed that LLMs exhibit distinct AInality traits and manifest diverse personality types, demonstrating dynamic shifts in response to external instructions. This study pioneers the application of projective tests on LLMs, shedding light on their diverse and adaptable AInality traits.