Abstract:This paper introduces the Maritime Ship Navigation Behavior Dataset (MID), designed to address challenges in ship detection within complex maritime environments using Oriented Bounding Boxes (OBB). MID contains 5,673 images with 135,884 finely annotated target instances, supporting both supervised and semi-supervised learning. It features diverse maritime scenarios such as ship encounters under varying weather, docking maneuvers, small target clustering, and partial occlusions, filling critical gaps in datasets like HRSID, SSDD, and NWPU-10. MID's images are sourced from high-definition video clips of real-world navigation across 43 water areas, with varied weather and lighting conditions (e.g., rain, fog). Manually curated annotations enhance the dataset's variety, ensuring its applicability to real-world demands in busy ports and dense maritime regions. This diversity equips models trained on MID to better handle complex, dynamic environments, supporting advancements in maritime situational awareness. To validate MID's utility, we evaluated 10 detection algorithms, providing an in-depth analysis of the dataset, detection results from various models, and a comparative study of baseline algorithms, with a focus on handling occlusions and dense target clusters. The results highlight MID's potential to drive innovation in intelligent maritime traffic monitoring and autonomous navigation systems. The dataset will be made publicly available at https://github.com/VirtualNew/MID_DataSet.
Abstract:Current visual question answering (VQA) tasks often require constructing multimodal datasets and fine-tuning visual language models, which demands significant time and resources. This has greatly hindered the application of VQA to downstream tasks, such as ship information analysis based on Synthetic Aperture Radar (SAR) imagery. To address this challenge, this letter proposes a novel VQA approach that integrates object detection networks with visual language models, specifically designed for analyzing ships in SAR images. This integration aims to enhance the capabilities of VQA systems, focusing on aspects such as ship location, density, and size analysis, as well as risk behavior detection. Initially, we conducted baseline experiments using YOLO networks on two representative SAR ship detection datasets, SSDD and HRSID, to assess each model's performance in terms of detection accuracy. Based on these results, we selected the optimal model, YOLOv8n, as the most suitable detection network for this task. Subsequently, leveraging the vision-language model Qwen2-VL, we designed and implemented a VQA task specifically for SAR scenes. This task employs the ship location and size information output by the detection network to generate multi-turn dialogues and scene descriptions for SAR imagery. Experimental results indicate that this method not only enables fundamental SAR scene question-answering without the need for additional datasets or fine-tuning but also dynamically adapts to complex, multi-turn dialogue requirements, demonstrating robust semantic understanding and adaptability.